• Title/Summary/Keyword: cushion

Search Result 363, Processing Time 0.025 seconds

Performance and Stability Evaluation of Muscle Activation (EMG) Measurement Electrodes According to Layer Design (근활성도(EMG) 측정 전극 레이어 설계에 따른 성능 및 안정성 평가)

  • Bon-Hak Koo;Dong-Hee Lee;Joo-Yong Kim
    • Science of Emotion and Sensibility
    • /
    • v.26 no.4
    • /
    • pp.41-50
    • /
    • 2023
  • This study aims to develop electromyography (EMG) textile electrodes and assess their performance and signal stability by examining variations in layer count and fabric types. We fabricated the electrodes through layering and pressing techniques, focusing on configurations with different layer counts (Layer-0, Layer-1, and Layer-2). Our findings indicate that layer presence significantly influences muscle activation measurements, with enhanced performance correlated with increased layer numbers. Subsequently, we created electrodes from five distinct fabrics (neoprene, spandex cushion, 100% polyester, nylon spandex, and cotton canvas), each maintaining a Layer-2 structure. In performance tests, nylon spandex fabric, particularly heavier variants, outperformed others, while the spandex cushion electrodes showed superior stability in muscle activation signal acquisition. This research elucidates the connection between electrode performance and factors like layer number and electrode-skin contact area. It suggests a novel approach to electrode design, focusing on layer properties and targeted pressure application on specific sensor areas, rather than uniformly increasing sleeve pressure.

Investigation on the Technical Characteristics and Cases of Salt Cavern for Large-Scale Hydrogen Storage (대규모 수소 저장을 위한 암염 공동 저장 기술 특성 및 적용 사례 분석)

  • Seonghak Cho;Jeonghwan Lee
    • Journal of the Korean Institute of Gas
    • /
    • v.28 no.2
    • /
    • pp.7-16
    • /
    • 2024
  • This study presents investigation on the technical characteristics and field cases of the salt cavern storage method for large-scale hydrogen storage. The salt cavern storage method enables effective hydrogen storage compared to other methods due to the low porosity and permeability of the rock salt that constitutes the cavern, which is not likely to leak and requires a small amount of cushion gas for operation. In addition, there is no chemical reaction between rock salt and hydrogen, and multiple injection/withdrawl cycles can be performed making it effective for peak shaving and short-term storage. The salt cavern is formed in three stages: leaching, debrining, and filling, and leakage tests are conducted to ensure stable operation. Field applications are currently performing to meet industrial demand in the surrounding area of four sites in the UK and Texas, USA, and salt cavern operation is being prepared for energy storage in European countries such as Germany and France. The investigated results in this study can be utilized as a basic guideline for the design of future hydrogen storage projects.

A Study on the Design of Cold Forging Die with Parted Notch (분할된 노치형상을 고려한 냉간단조 금형 설계에 관한 연구)

  • Lee, H.Y.;Yeo, H.T.;Hur, K.D.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2007.05a
    • /
    • pp.434-437
    • /
    • 2007
  • Cold forging technology of a gear product is being interested in the dimensional accuracy, high stiffness and reduction of stress concentration. Especially it is needed to avoid the damage due to extremely high local pressure. Therefore it is important to ensure high pressure in die design. In this study, single die insert type and splitted die insert type are considered to recognize the notch effects in the die of sprocket forming. The stress concentration has been released at the notch area by the cushion effect in the splitted die insert.

  • PDF

Developmental Morphology of Osmundea crispa (Ceramiales, Rhodophyta) from California

  • Nam Ki Wan;Choi Han Gil
    • Fisheries and Aquatic Sciences
    • /
    • v.2 no.1
    • /
    • pp.25-31
    • /
    • 1999
  • Developmental morphology of the red alga, Osmundea crispa (Hollenberg) Nam from California was studied on the basis of liquid-preserved and herbarium specimens. Vegetative axial segment of the species produces two pericentral cells and one trichoblast. Spermatangial filaments (branches) are derived from apical and epidermal cells in pocket-shaped apical pit with an ostiole-like upper opening. Procarp-bearing segment of female trichoblast produces five pericentral cells, of which the fifth functions as supporting cell of carpogonial branch. Tetrasporangial production occurs in random epidermal cells in apical pit of branchlets, and two presporangial cover cells show parallel arrangement to stichidial axis. As this vegetative and reproductive development is included in the generic delineation of Osmundea Stackhouse, O. crispa among the known Osmundea species is characterized by habit forming compact cushion-like clump with angular to terete thallus. It is also distinguished from O. hybrida (AP. de Candolle) Nam without the compressed thallus by the number of pericentral cells in procarp-bearing segment and shape of spermatangial pit. Taxonomic implication of the shape of spermatangial pit is also included.

  • PDF

Particle Impact Damage behaviors in silicon Carbide Under Gas Turbine Environments-Effect of Oxide Layer Due to Long-Term Oxidation- (세라믹 가스터빈 환경을 고려한 탄화규소의 입자충격 손상거동-장기간 산화에 따른 산화물층의 영향-)

  • 신형섭
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.4
    • /
    • pp.1033-1040
    • /
    • 1995
  • To simulate strength reliability and durability of ceramic parts under gas turbine application environments, particle impact damage behaviors in silicon carbide oxidized at 1673 K and 1523 K for 200 hours in atmosphere were investigated. The long-term oxidation produced a slight increase in the static fracture strength. Particle impact caused a spalling of oxide layer. The patterns of spalling and damage induced were dependent upon the property and impact velocity of the particle. Especially, the difference in spalling behaviors induced could be explained by introducing the formation mechanism of lateral crack and elastic-plastic deformation behavior at impact sit. At the low impact velocity regions, the oxidized SiC showed a little increase in the residual strength due to the cushion effect of oxide layer, as compared with the as-received SiC without oxide layer.

The investigation of erosion control works' condition in East sea fire area (동해안 대형 산불피해지의 사방사업 실태진단)

  • Yeom, Kyu-Jin;Chun, Kun-Woo;Cha, Doo-Song;Lee, Si-Young;Lee, Hyun-Kyu;Lee, Myung-Woog;Kim, Youn-Jin;Lee, Jin-Ho;Kim, Suk-Woo;Tsugio, Ezaki
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.509-512
    • /
    • 2007
  • The fire area need management to prevent enlargement of collapes and sinkage. and it need that repair Vegetation sack work, Soil arresting structure, Terrace-sodding works, Direct seeding works in greening works and Water cushion in erosion control dam. The whole of the Concrete stream grade stabilization structures were broken, it need to be repair. As pass the time, a lot of structures were abandoned. Therefore, it need to reorganize erosion control structures and the method of construction in the fire area

  • PDF

Finite Element Modeling of Folded Airbag and Analysis of Deployment Process (운전석 및 조수석 에어백 단품의 유한요소 모델링과 전개 과정 해석)

  • 김헌영;이상근;신윤재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.236-246
    • /
    • 1996
  • The deployment process of fully folded airbag is analyzed. The methodology of finite element modeling is presented for flat driver side airbag and 3-dimensional passenger side airbag. 'Initial metric option' is used to model 3-dimensional passenger side airbag before deployment. The deformed shapeds and pressure waveforms inside cushion evaluated from simulation are compared to the test results. The agreements between the simulation and the experiments are satisfactory, and the results of simulation are confirmed to be applied to the design of airbag module.

  • PDF

Characterics of Meter-In / Meter-Out Circuits to pneumatic System (공압회로에서 미터인 회로와 미터아웃 회로의 특성 비교)

  • 박재범;염만오
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.446-450
    • /
    • 2002
  • Pneumatic system has been mainly used as main equipment for actuation and control of compressed air force in manufacturing industry, pneumatic circuit for the most part is used in Meter-Out circuit. Meter-Out circuit method is Flow Control Valve to fit in exhaust part of cylinder port. In the reverse, Meter-In circuit is Flow Control Valve to fit in input part of cylinder port. This study examines the dynamic characteristics comparison of Meter-In and Meter-Out Circuits in the pneumatic circuits. The results of the experimental research are obtained to the followings: i ) System Response is Meter-In Circuit more than Meter-Out one before cushion zone. ii) we conjectured that the collision of piston and head cover is ease to collide Meter-In Circuit more than Meter-Out one at the stroke end part.

  • PDF

Construction Mechanism of Reticular Structure of Plant Fiber

  • Xie, Yongqun;Tong, Queju;Chen, Yan
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.2
    • /
    • pp.106-110
    • /
    • 2008
  • This paper investigated and validated the mechanisms and principles for constructing reticular structure of plant fiber through frothing solution approach. After process, plant fibers became low-density reticular-structured block with all properties meeting Chinese standards for cushion packing materials. The bonds between fibers acted as knots in a truss and were strong enough to keep space occupied by bubbles in the frothing solution from shrinking in the subsequent draining process. The formation of the reticular structure depends mainly on the pressure difference between inside and outside bubble, the effect of surface adsorbent force on bubble film, and hydrogen bond among fiber hydroxide.

  • PDF

Analyses of Deployment Process and Sled Test for Designing Airbag Module (에어백 단품설계를 위한 전개과정과 승객거동해석)

  • 김헌영;이상근;신윤재
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.6 no.2
    • /
    • pp.118-128
    • /
    • 1998
  • Finite element analyses are carried out to provide results usable in the design of airbag module that consists of inflater, cushion, cover, mounting plate, etc. In the first phase, a deployment process of airbag module is analyzed to evaluate the pressure waveform of developed airbag and deployment characteristics, and is compared with the test results. Interaction between head form and inflated airbag module is investigated in the second phase. In the last stage, sled test with rigid dummy, airbag midule, driving system and car interior part are simulated to investigate the influence of airbag design factor on the behavior of dummy with seat belt. The procedures can be provided as a guideline for airbag module design and improvement of airbag module performance.

  • PDF