• Title/Summary/Keyword: curved section

Search Result 301, Processing Time 0.024 seconds

Seismic Fragility Analysis of Curved Bridge under High Frequency Earthquakes (고주파 지진에 의한 곡선 교량의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.16 no.4
    • /
    • pp.806-812
    • /
    • 2020
  • Purpose: This is aimed to evaluate the seismic fragility of curved bridge structure with I-shape girder subjected to 12 high frequency ground motions based on Gyeongju earthquake. Method: The linear elastic finite element model of curved bridge with I-Shape cross section was constructed and them linear elastic time history analyses were performed using the 12 artificial ground motions. Result: It was found that displacement response(LS1, LS2) was failed after PGA 0.1g and the stress response also showed failure after PGA 0.2g. Conclusion: The curved bridge with I-shape girder was sensitive to high frequency earthquakes.

Optimum design of parabolic and circular arches with varying cross section

  • Uzman, Umit;Daloglu, Ayse;Saka, M. Polat
    • Structural Engineering and Mechanics
    • /
    • v.8 no.5
    • /
    • pp.465-476
    • /
    • 1999
  • A structural optimization process is presented for arches with varying cross-section. The optimality criteria method is used to develop a recursive relationship for the design variables considering displacement, stresses and minimum depth constraints. The depth at the crown and at the support are taken as design variables first. Then the approach is extended by taking the depth values of each joint as design variable. The curved beam element of constant cross section is used to model the parabolic and circular arches with varying cross section. A number of design examples are presented to demonstrate the application of the method.

CFRP strengthening of steel beam curved in plan

  • Keykha, Amir Hamzeh
    • Steel and Composite Structures
    • /
    • v.41 no.5
    • /
    • pp.637-648
    • /
    • 2021
  • Nowadays, one of the practical, fast and easy ways to strengthen steel elements is the use of Carbon Fiber Reinforced Polymer (CFRP). Most previous research in the CFRP strengthening of steel members has carried out on straight steel members. The main difference between horizontal curved beams and straight beams under vertical load is the presence of torsional moment in the horizontal curved beams. In the other words, the horizontal curved beams are analyzed and designed for simultaneous internal forces included bending moment, torsional moment, and shear force. The horizontal curved steel beams are usually used in buildings, bridges, trusses, and others. This study explored the effect of the CFRP strengthening on the behavior of the horizontal curved square hollow section (SHS) steel beams. Four specimens were analyzed, one non-strengthened curved steel beam as a control column and three horizontal curved steel beams strengthened using CFRP sheets (under concentrated load and uniform distributed load). To analyze the horizontal curved steel beams, three dimensional (3D) modeling and nonlinear static analysis methods using ANSYS software were applied. The results indicated that application of CFRP sheets in some specific locations of the horizontal curved steel beams could increase the ultimate capacity of these beams, significantly. Also, the results indicated when the horizontal curved steel beams were under distributed load, the increase rate in the ultimate capacity was more than in the case when these beams were under concentrated load.

Parametric Study on Buckling Behavior of Longitudinally Stiffened Curved Panels by Closed-section Ribs (폐단면리브로 보강된 곡판의 국부판좌굴에 관한 변수해석적 연구)

  • Andico, Arriane Nicole P.;Kwak, Jae-Young;Choi, Byung-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.714-721
    • /
    • 2018
  • In this study, we investigate a design technology intended to radically increase the buckling strength of vertically curved panels. Recent studies proposed a buckling strength formula which properly reflects the effect on the local plate buckling strength of flat plates when they are stiffened by closed section ribs. Herein, we attempted to quantitatively evaluate this effect on curved panels and to reveal the correlations with the design parameters. The commercial finite element software, ABAQUS, was used to build a three dimensional numerical model and numerical parametric studies were conducted to evaluate the variation of the buckling strength. In the case of flat panels, the local buckling strength of stiffened curved panels increases proportionally with increasing rotational stiffness of the closed-section ribs. After attaining a limiting value, an obvious tendency was found that the local buckling strength of the stiffened curved panel would converge towards a fixed value when the panels are supported along both sides. The parametric studies performed using the influential design parameters confirmed that the estimated partially-restrained curved panel strength is well correlated with the proposed formula.

Free Vibration Analysis of Thin-walled Curved Beams with Unsymmetric Cross-section (비대칭 단면을 갖는 박벽 곡선보의 자유진동 해석)

  • 김문영
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.41-54
    • /
    • 1999
  • For free vibration of non-symmetric thin-walled circular arches including restrained warping effect, the elastic strain and kinetic energy is derived by introducing displacement fields of circular arches in which all displacement parameters are defined at the centroid axis. The cubic Hermitian polynomials are utilized as shape functions for development of the curved thin-walled beam element having eight degrees of freedom. Analytical solution for in-plane free vibration behaviors of simply supported thin-walled curved beams with monosymmetric cross-sections is newly derived. Also, a finite element formulation using two noded curved beams element is presented by evaluating elastic stiffness and mass matrices. In order to illustrate the accuracy and practical usefulness of this study, analytical and numerical solutions for free vibration of circular arches are presented and compared with solutions analyzed by the straight beam element and the ABAQUS's shell element.

  • PDF

The Design Simulation of the Levitation Magnet for the Urban Transit Maglev as the Running Vehicle on Curved Line(60mR) (자기부상열차의 곡선주로(60mR) 주행 시를 고려한 부상용 전자석 설계 Simulation)

  • Kim, Bong-Seop
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.682-684
    • /
    • 2002
  • There is much room for consideration that the magnet design of UTM. When the vehicle runs 60mR curved line on test track, the ratio of cross section area changed to cross the magnet pole and rail. The ratio is reduced about 20% of the total magnet on one bogie. Therefor, magnet current is increased about 3.5A to maintain constant air gap. This paper suggest to margin of the magent design is 1.1 rather than rated levitation force.

  • PDF

Effects of Cu Wire's Shape on the Plating Property of Sn-Pb Solder for Photovoltaic Ribbons

  • Cho, Tae-Sik;Chae, Mun-Seok;Cho, Chul-Sik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.4
    • /
    • pp.217-220
    • /
    • 2014
  • We studied the plating properties of Sn-Pb solder according to the shape of the Cu wire's cross-section for photovoltaic ribbon. The thickness of the Sn-Pb layer largely decreased to 29% on a curved Cu surface, compared to a flat Cu surface. This phenomenon is caused by the geometrical decrease in the contact angle of the liquid Sn-Pb solder and an increase in the surface energy of the solid/vapor on the curved Cu surface. We suggest a new ribbon's design where the Cu wire's cross-section is a semi-ellipse. These semi-ellipse ribbons can decrease the use of Sn-Pb solder to 64% and increase the photovoltaic efficiency, by reducing the contact area between the ribbon and cell, to 84%. We also see an improvement of reflectivity in the curved surface.

Numerical Study on Pulsatile Flow and Heat Transfer in a Curved Tube with Constant Heat Flux (일정 열유속을 받는 곡관내에서의 맥동 열유동에 관한 수치적 연구)

  • 백영렬;이재헌;오명도
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1031-1038
    • /
    • 1994
  • Characteristics of pulsatile flow and heat transfer have been studied numerically in the constant heat flux curved tube with periodic pressure gradient. As the Womersley number increases, the phase difference between the pressure gradient and the cross section averaged axial velocity becomes larger. In case of the Womersley number $\beta = 2$, when cross section averaged axial velocity reaches periodic state with time, the reverse and the natural flow coexist at phase angle, $\lambda = 1.44\pi$ and $\lambda =1.96\pi$. For all the Womersley numbers of present investigation, the time variation of wall temperature near inner wall is higher than that of near outer wall, independent of phase angle.

Free Vibration Analysis of Curved Beams with Varying Cross-Section (단면적이 변하는 곡선보의 진동해석)

  • Kang, Ki-Jun;Kim, Young-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.5
    • /
    • pp.453-462
    • /
    • 2009
  • The differential quadrature method(DQM) is applied to the free in-plane vibration analysis of circular curved beams with varying cross-section neglecting transverse shearing deformation. Natural frequencies are calculated for the beams with various opening angles and end conditions. Results obtained by the DQM are compared with available results by other methods in the literature. It is found that the DQM gives good accuracy even with a small number of grid points. In addition, the corrected results are given for the beams not previously presented for this problem.

Free Vibrations of Circular Curved Beams with Constant Volume (일정체적 원호형 곡선보의 자유진동)

  • Lee, Byoung-Koo;Lee, Tae-Eun;Choi, Jong-Min;Park, Chang-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.6
    • /
    • pp.570-579
    • /
    • 2011
  • This paper deals with free vibrations of the circular curved beams with constant volume, whose cross sectional shapes are the circular solid cross-sections. Volumes of the objective beam are always held in constant regardless shape functions of the cross-sectional radius. The shape functions are chosen as the linear, parabolic and sinusoidal ones. Ordinary differential equations governing free vibrations of such beam are derived and solved numerically for determining the natural frequencies. In numerical examples, the hinged-hinged, hinged-clamped and clamped-clamped end constraints are considered. As the numerical results, relationships between frequency parameters and various beam parameters such as rise ratio, section ratio, elasticity ratio, volume ratio, slenderness ratio and taper type are reported in tables and figures.