• Title/Summary/Keyword: curvature factor

Search Result 229, Processing Time 0.021 seconds

A Study on the lmprovement of Accuracy in Manufacturing of Bourdon Tube (부르돈관의 가공정밀도 향상에 관한 연구)

  • Na, Ki-Hyoung;Jhang, Kyung-Young
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.8
    • /
    • pp.31-39
    • /
    • 1996
  • In this paper, the error and its sources in manufacturing of bourdon tube pressure gage was studied, and the method to reduce such errors was discussed. In more detail, the effects of parallelism of rollers, spring back, uniformity of radius curvature and the ratio of circumferential speeds of rollers were invesrti- gated. As a reselt, we could find out that the aprallelism of roller affected to the displacement error at the free end of gage and that the amount of spring back was closely related with the ratio of circumferential speeds of rollers. The uniformity of curvature radius was determined by the distance between bending rollers and it was comparatively uniform in the range above 30 .deg. C from the both sides of tube. Also, the ratio of circumfer-ential speeds of rollers was finded out as a very important factor giving severe influence on the creep or the hysteresis of bourdon tube.

  • PDF

Study on Optical Control Layer for Micro Pattern Shape Change Using Thermal Reflow Process (Thermal Reflow 공정 적용 Micro Pattern 형상 변화를 통한 광 향상 구조층 연구)

  • Seong, Min-Ho;Cha, Ji-Min;Moon, Seong-Cheol;Ryung, Si-Hong;Lee, Seong Eui
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.5
    • /
    • pp.306-313
    • /
    • 2015
  • In this study, the change of optical characteristics was studied according to the micro optical pattern provided by photo lithography followed by thermal reflow process. The shape and luminance variation with micro pattern was evaluated by SEM and spectrometers. Also, we analyzed the luminance characteristics using the 3D-optical simulation (Optis works) program. As a result, we found that the radius of curvature(R) in micro pattern is decreased up to 77%($150^{\circ}C$) compared to the radius of curvature at the condition $100^{\circ}C$, which is caused by efficient reflow of organic material without chemical changes. The highest enhancement of brightness with optimum micro pattern was obtained at the condition of $120^{\circ}C$ reflow process. The brightness gain with optical micro patterns is more than 15% at the condition of R=16.95 um, ${\Theta}=77.14^{\circ}$ compared to original optical source. The results of light simulation with various radius of curvature and side angle of pattern shows the similar result of experiment evaluation of light behavior on optical micro patterns. It is regarded that the more effect on light enhancement was contributed by side angle which is effective factor on light reflection, rather than the curvature of micro-patterns.

Generalized Lateral Load-Displacement Relationship of Reinforced Concrete Shear Walls (철근콘크리트 전단벽의 횡하중-횡변위 관계의 일반화)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.159-169
    • /
    • 2014
  • This study generalizes the lateral load-displacement relationship of reinforced concrete shear walls from the section analysis for moment-curvature response to straightforwardly evaluate the flexural capacity and ductility of such members. Moment and curvature at different selected points including the first flexural crack, yielding of tensile reinforcing bar, maximum strength, 80% of the maximum strength at descending branch, and fracture of tensile reinforcing bar are calculated based on the strain compatibility and equilibrium of internal forces. The strain at extreme compressive fiber to determine the curvature at the descending branch is formulated as a function of reduction factor of maximum stress of concrete and volumetric index of lateral reinforcement using the stress-strain model of confined concrete proposed by Razvi and Saatcioglu. The moment prediction models are simply formulated as a function of tensile reinforcement index, vertical reinforcement index, and axial load index from an extensive parametric study. Lateral displacement is calculated by using the moment area method of idealized curvature distribution along the wall height. The generalized lateral load-displacement relationship is in good agreement with test result, even at the descending branch after ultimate strength of shear walls.

Prediction of the Clothing Pressure Using the Radii of Double Curvature and Transformation of a Fabric (인체의 복곡면과 직물 변형 특성을 이용한 의복압 예측법의 개선)

  • Lee, Ye-Jin;Hong, Kyung-Hi
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.29 no.8 s.145
    • /
    • pp.1168-1175
    • /
    • 2005
  • Clothing pressure has close relation with clothing comfort and depends on the pattern and properties of textile fabrics. Choosing a suitable clothing pressure is an essential factor for designing functional clothing such as the foundation for reshaping of a body contour or medical items for bum patient, and etc. However, it is hard to measure pressure values at the curved surface of a human body correctly. Recently, an air pack type pressure sensor, which has relatively excellent performance has been used to measure clothing pressure, however, it is still inconvenient to apply because it is a contact- type sensor. Therefore, in this paper, we suggest an indirect method that can measure clothing pressure without touching the subject by improving the equation of Kirk and Ibrahim (1966). However, confusions have been occurred when someone use the equation since the definition of parameters are somewhat vague. Furthermore, the estimated clothing pressure obtained by the previous method are quite different from the real values because this method does not consider the 3D effect of a human body and property changes of a transformed fabric. In this paper, the direction of principal stress and the radius of curvature in the principal direction were searched in the 3D image of the deformed girdle to get more accurate clothing pressure. The estimated clothing pressure was verified by comparing the result of the air pack type pressure sensor. It was found that the accuracy of the pressure estimation was improved by considering the 3D curvature of human body and the directional characteristics of textile fabrics.

Classification of Adult Women's Fingernail Type (성인 여성의 손톱 유형 분류)

  • Kim, Ha Eun;Kim, Nam Soon;Do, Wol Hee
    • Fashion & Textile Research Journal
    • /
    • v.22 no.4
    • /
    • pp.504-514
    • /
    • 2020
  • This study improves the dimensional suitability of nail tip products by reviewing the type of fingernail as seen among adult women in Korea. Subjects were 147 adult women ranging from age 20 to 40. Direct fingernails measurements were made using digital Vernier calipers and a curvature gauge. Data on various fingernail shapes were collected through indirect measurements using photography to reveal the shape characteristics of each fingernail types. In this sense, data were analyzed by statistical methods with the use of factor analysis. There were various factors considered to classify extracted fingernail types such as five factors (for the thumb), four factors (index, middle, and little fingers), and three factors (for the ring finger). The cluster analysis resulted in three types. Type 1 is a 'Square' shape characterized with wide fingernails, low height, flat, and low curvature of the cuticle line. Type 2 is 'U-round' shape characterized with narrow fingernails, high height, convex, and the highest curvature of the cuticle line. Type 3 is a 'Round' shape in which the fingernails are wide, high in height, convex, and characterized with a medium curvature of the cuticle line. The results are useful for companies that develop the free edge shape of fingernails for consumer products. The measured values of fingernail can be applied to the shape and lake setting of the nail tip product, depending on type of fingernail.

Characterization of Radial Stress in Curved Beams

  • Oh, Sei Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.37 no.2
    • /
    • pp.128-136
    • /
    • 2009
  • Curved glued laminated timber (glulam) is rapidly coming into the domestic modern timber frame buildings and predominant in building construction. The radial stress is frequently occurred in curved beams and is a critical design parameter in curved glulam. Three models, Wilson equation, Exact solution and Approximation equation were introduced to determine the radial stress of curved glulam under pure bending condition. It is obvious that radial stress distribution between small radius and large radius was different due to slight change of neutral plane location to center line. If the beam design with extremely small radius, it should be considered to determine the exact location of maximum radial stress. The current standard KSF 3021 was reviewed and would be considered some adjustment determining the optimum radius in curved glulam. Current design principle is that the stress factor is given by the curvature term only in constant depth of the beam, but like tapered or small radius of beams, the stress factor by Wilson equation was underestimated. So current design formula should be considered to improvement for characterizing the radial stress factor under pure bending condition.

Experimental Study of Friction Factors for Laminar, Transition, and Turbulent Flow Regimes in Helical Coil Tubes (헬리컬 코일 튜브에서의 층류, 천이, 난류 영역의 마찰계수에 대한 실험적 연구)

  • Park, Won Ki;Kim, Taehoon;Do, Kyu Hyung;Han, Yong-Shik;Choi, Byung-Il
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.1
    • /
    • pp.7-15
    • /
    • 2018
  • The friction factors according to the flow regimes in helical coil tubes depend on the coil diameter, the tube diameter, and the coil pitch. In previous studies, correlations for the laminar flow regime in helical coil tubes have been proposed. However, studies on the transition flow regime and the turbulent flow regime are insufficient and further researches are necessary. In this study, characteristics of the friction factors for the laminar, transition and turbulent flow regimes in helical coil tubes were experimentally investigated. The helical coil tubes used in the experiments were made of copper. The curvature ratios of the helical coil tubes, which means the ratio of helical coil diameter to inner diameter of the helical coil tube are 24.5 and 90.9. Experiments were carried out in the range of $529{\leq}Re{\leq}39,406$ to observe the flows from the laminar to the turbulent regime. The friction factors were obtained by measuring the differential pressures according to the flow rates in the helical coil tubes while varying the curvature ratios of the helical coil tubes. Experimental data show that the friction factors for the helical coil tube with 24.5 in the curvature ratio of the helical coil tube were larger than those in the straight tube in all flow regimes. As the curvature ratio of the helical coil tube increases, the friction factor in turbulent flow regime tends to be equal to that of the straight tube. In addition, it was confirmed that the transition flow regimes in the helical coil tubes were much wider than those in the straight tube, also the critical Reynolds numbers were larger than those in the straight tube. The results obtained in this experimental study can be used as basic data for studies on the water hammer phenomenon in helical coil tubes.

Analysis of Apparatus Variables for Deformation Strength Test of Asphalt Concrete Based on Correlation with Rutting and Prediction Model for Rutting (소성변형과의 상관성 및 추정모델을 통한 변형강도 시험장치 변수 분석)

  • Kim, Kwang-Woo;Lee, Moon-Sup;Kim, Sung-Tae;Lee, Soon-Jae
    • International Journal of Highway Engineering
    • /
    • v.4 no.4 s.14
    • /
    • pp.41-52
    • /
    • 2002
  • This study dealt with analysis of size effect of testing apparatus for Kim test which measures rut resistance characteristics of asphalt mixture under static loading. Two columns in different diameter with each column having different radios of round cut (Curvature) at the bottom were used for testing asphalt mixture. Deformation load ($P_{max}$) and deformation strength ($K_D$) were found to have relatively high correlation with rut depth and dynamic stability of asphalt concrete. Diameter of specimen was not a significant factor in this test. From the statistical correlation analysis with rutting properties, the radius of curvature and diameter of loading column were found to be important factor affecting the results of the test. Among the radios (r) of curvatures, r=0.5cm and 1.0cm showed much higher correlation than the column without curvature, and r=1.0cm being better between the two. The column with diameter of 4cm showed better correlation than diameter of 3cm. Therefore, the column of 4cm diameter with r=1.0cm was found to be the best among various apparatus sizes. Prediction models for rut depth and dynamic stability were developed for each aggregate mixture based on Kim test variables using SAS STEPWISE procedure. Therefore, if this test method is validated through further study, Kim test can be used for selecting asphalt mixture with the highest resistance against permanent deformation.

  • PDF

Evaluation of Biodiversity Based on Changes of Spatial Scale -A Case Study of Baekdudaegan Area in Kangwondo- (공간스케일 변화에 따른 생물다양성 평가 -강원도 백두대간 보호구역을 대상으로-)

  • Sim, Woodam;Park, Jinwoo;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.30 no.1
    • /
    • pp.91-100
    • /
    • 2014
  • This research was conducted on the conservation area of Baekdudaegan, Kangwondo under the purpose of evaluating bio-diversity according to the changes of spatial scale, using GIS data and spatial filtering method. The diversity index was calculated based on the information of species of The $5^{th}$ forest type map using Shannon-weaver index (H'), evenness index ($E_i$) and richness index ($R_i$). The diversity index was analyzed and compared according to the changes of 12 spatial scales from Kernel size $3{\times}3$ to $73{\times}73$ and basin unit. As for H' and $R_i$, spatial scale increased as diversity index decreased, while $E_i$ decreases gradually. H' and $R_i$ was highest; each 1.1 and 0.6, when the Kernel size was $73{\times}73$, while $E_i$ was 0.2, the lowest. When you look at according to the basin unit, for large basin unit, 'YeongDong' region shows higher diversity index than 'YeongSeo' region. For middle basin unit, 'Gangneung Namdaecheon' region, and for small basin unit, 'Gangneung Namdaecheon' and 'Gangneung Ohbongdaem' region shows high diversity index. When you look at the relationship between diversity index and Geographic factors, H' shows positive relation to curvature and sunshine factor while shows negative to elevation, slope, hillshade, and wetness index. Also $E_i$ was similar to the relationship between H' and Geographic factor. Meanwhile, $R_i$ shows positive relationship to curvature and sunshine factor, while negative to elevation, slope, hillshade, and wetness index. macro unit diversity index evaluation was possible through the GIS data and spatial filtering, and it can be a good source for local biosphere conservation policy making.

The Curved Interfacial Crack Analysis between Foam and Composite Materials under Anti-plane Shear Force (반평면 전단하중력을 받는 곡면형상을 가지는 폼과 복합재료 접합부의 계면크랙에 관한 연구)

  • 박상현;신재윤;전흥재
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2000.04a
    • /
    • pp.101-104
    • /
    • 2000
  • The general solution of the anti-plane shear problem for the curved interfacial crack between viscoelastic foam and composites was investigated with the complex variable displacement function and Kelvin-Maxwell model. The Laplace transform was applied to treat the viscoelastic characteristics of foam in the analysis. The stress intensity factor near the interfacial crack tip was predicted by considering both anisotropic and viscoelastic properties of two different materials. The results showed that the stress intensity factor increased with increasing the curvature of the curved interfacial crack and it also increased and eventually converged to a specific value with increasing time.

  • PDF