• Title/Summary/Keyword: curvature factor

Search Result 229, Processing Time 0.024 seconds

Flexural ductility and deformability of reinforced and prestressed concrete sections

  • Au, Francis T.K.;Leung, Cliff C.Y.;Kwan, Albert K.H.
    • Computers and Concrete
    • /
    • v.8 no.4
    • /
    • pp.473-489
    • /
    • 2011
  • In designing a flexural member for structural safety, both the flexural strength and ductility have to be considered. For this purpose, the flexural ductility of reinforced concrete sections has been studied quite extensively. As there have been relatively few studies on the flexural ductility of prestressed concrete sections, it is not well understood how various structural parameters affect the flexural ductility. In the present study, the full-range flexural responses of reinforced and prestressed concrete sections are analyzed taking into account the nonlinearity and stress-path dependence of constitutive materials. From the numerical results, the effects of steel content, yield strength and degree of prestressing on the yield curvature and ultimate curvature are evaluated. It is found that whilst the concept of flexural ductility in terms of the ductility factor works well for reinforced sections, it can be misleading when applied to prestressed concrete sections. For prestressed concrete sections, the concept of flexural deformability in terms of ultimate curvature times overall depth of section may be more appropriate.

Seismic Curvature Ductility of RC Bridge Piers with 2.5 Aspect Ratio (형상비 2.5의 RC 교각의 내진 곡률연성도)

  • Chung, Young-Soo;Park, Chang-Kyu;Lee, Eun-Hee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.3
    • /
    • pp.1-12
    • /
    • 2004
  • Due to the 1989 Loma Prieta, 1995 Hyogoken Nambu earthquakes, etc, a number of bridge columns  were collapsed in flexure-shear failures as a consequence of the premature termination of the column longitudinal reinforcement. Nevertheless, previous researches for the performance of bridge columns were concentrated on the flexural failure mode. It is well understood that the seismic behaviour of RC bridge piers was dependent on the performance of the plastic hinge of RC bridge piers, the ductility of which was desirable to be computed on the basis of the curvature. Experimental investigation was made to evaluate the variation of the curvature of the plastic hinge  region for the seismic performance of earthquake-damaged RC columns in flexure-shear failure mode. Seven test specimens in the aspect ratio of 2.5 were made with test parameters: confinement ratios, lap splices, and retrofitting FRP materials. They were damaged under series of artificial earthquakes that could be compatible in Korean peninsula. Directly after the pseudo-dynamic test, damaged columns were retested under inelastic reversal cyclic loading under a constant axial load, $P=0.1f_{ck}A_g$. Residual seismic capacity of damaged specimens was evaluated by analzying the moment-curvature hysteresis and the curvature ductility. Test results show that the biggest curvature was developed around 15cm above the footing, which induced the column failure. It was observed that RC bridge specimens with lap-spliced longitudinal steels appeared to fail at low curvature ductility but significant improvement was made in the curvature ductility of RC specimens with FRP straps wrapped around the plastic hinge region. Based on the experimental variation of the curvature of RC specimens, new equivalent length of the plastic hinge region was proposed by considering the lateral confinement in this study. The analytical and experimental relationship between the displacement and the curvature ductility were compared based on this proposal, which gave excellent result.

Stress Analysis of Epitrochoidal Gerotor for Hydraulic Motor (유압 모터용 에피트로코이드 제로터의 응력해석)

  • Kim, Du-In;Choe, Dong-Hun;An, Hyo-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.963-971
    • /
    • 2000
  • Gerotor is a planar mechanism consisting of a rotor and lobes which form a closed space, namely a chamber. As active contact points between a rotor and lobes are subjected to very high contact stresses, wear in one or both of the rotor and lobe cannot be avoided. Therefore, in the design of Gerotor used in hydraulic motors a compromise between high torque output and contact stress is of great importance and a thorough analysis of design parameters should be conducted to achieve this compromise. In this study, a contact point is modelled as a linear spring in consideration of equivalent curvature to analyze the contact stress. As the contact stress calculation in this problem is a statically indeterminate type, a numerical iterative scheme has been adopted to obtain the solution. To fully understand the influence of design parameters on the contact stress, the relationship between pressure force, equivalent curvature, contact force and contact stress are analyzed. It is shown that the equivalent curvature of the contact point is a dominant factor that affects the maximum contact stress.

Two-wheeler Detection System using Histogram of Oriented Gradients based on Local Correlation Coefficients and Curvature

  • Lee, Yeunghak;Kim, Taesun;Shim, Jaechang
    • Journal of Multimedia Information System
    • /
    • v.2 no.4
    • /
    • pp.303-310
    • /
    • 2015
  • Vulnerable road users such as bike, motorcycle, small automobiles, and etc. are easily attacked or threatened with bigger vehicles than them. So this paper suggests a new approach two-wheelers detection system riding on people based on modified histogram of oriented gradients (HOGs) which is weighted by curvature and local correlation coefficient. This correlation coefficient between two variables, in which one is the person riding a bike and other is its background, can represent correlation relation. First, we extract edge vectors using the curvature of Gaussian and Histogram of Oriented Gradients (HOG) which includes gradient information and differential magnitude as cell based. And then, the value, which is calculated by the correlation coefficient between the area of each cell and one of bike, can be used as the weighting factor in process for normalizing the HOG cell. This paper applied the Adaboost algorithm to make a strong classification from weak classification. The experimental results validate the effectiveness of our proposed algorithm show higher than that of the traditional method and under challenging, such as various two-wheeler postures, complex background, and even conclusion.

A Study on the Moment Gradient factor of Mono-symmetric I Beam (일축 대칭 I 형 보의 모멘트 구배계수에 대한 연구)

  • 김윤종;임남형;박남회;강영종
    • Proceedings of the KSR Conference
    • /
    • 2000.05a
    • /
    • pp.439-446
    • /
    • 2000
  • In this study, 7 dof (Including warping) beam element was developed to estimate the effects of wagner effects and load height effects on the lateral buckling strength of mono-symmetric I beam. Finite element buckling analysis of mono-symmetric I-shaped girders subjected to transverse loading applied at different heights on the cross-section were conducted. Linear moment gradient were considered, too. In these cases, girders are subjected to both single-curvature and Reverse-curvature bending. An applicability of current LRFD C$\sub$b/ on the mono-symmetric I beam was studied from the finite element results. The problems of current LRFD C$\sub$b/ occurring from load height effects and reverse curvature bending in unbraced length when applied on the mono-symmetric I beam were studied. Solutions to these problems are also presented.

  • PDF

Energy harvesting characteristics on curvature based PVDF cantilever energy harvester due to vortex induced vibration (곡면을 가진 외팔보형 PVDF 에너지 하베스터의 와류유기진동으로 인한 에너지 수확 특성)

  • Woo-Jin Song;Jongkil Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.2
    • /
    • pp.168-177
    • /
    • 2024
  • When designing an underwater Piezoelectric Energy Harvester (PEH), Vortex Induced Vibration (VIV) is generated throughout the cantilever through a change in curvature, and the generation of VIV increases the vibration displacement of the curved cantilever PEH, which is an important factor in increasing actual power. The material of the curved PEH selected a Polyvinyline Di-Floride (PVDF) piezoelectric film, and the flow velocity is set at 0.1 m/s to 0.50 m/s for 50 mm, 130 mm, and 210 mm with various curvatures. The strain energy change of PEH by VIV was observed. The smaller the radius of curvature, the larger the VIV, and as the flow rate increased, more VIV appeared. Rapid shape transformation due to the small curvature was effective in generating VIV, and strain energy, normalized voltage, average power, etc. To increase the amount of power of the PEH, it is considered that the average power will increase as the number of curved PEHs increases as well as the steep curvature is improved.

LOCAL INFLUENCE ON THE GOODNESS-OF-FIT TEST STATISTIC IN MAXIMUM LIKELIHOOD FACTOR ANALYSIS

  • Jung, Kang-Mo
    • Journal of applied mathematics & informatics
    • /
    • v.5 no.2
    • /
    • pp.489-498
    • /
    • 1998
  • The influence of observations the on the goodness-of-fit test in maximum likelihood factor analysis is investigated by using the local influence method. under an appropriate perturbation the test statistic forms a surface. One of main diagnostics is the maximum slope of the perturbed surface the other is the direction vector cor-responding to the curvature. These influence measures provide the information about jointly influence measures provide the information about jointly influential observations as well as individ-ually influential observations.

An Application of Strength Reduction Factors to Reinforced Concrete Columns considering Ductility (연성을 고려한 철근콘크리트 기둥의 강도감소계수 적용에 관한 연구)

  • 손혁수;이재훈
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.4
    • /
    • pp.147-156
    • /
    • 1999
  • Current design code states that the strength reduction factor shall be permitted to be increased linearly from that for axial compression to that for flexure as the design axial load strength $\Phi$cPn decrease from 0.1fckAg to zero. Since this empirically adopted axial load level of $\Phi$cPn=0.1fckAg considers only sectional area and concrete strength, the other variables such as steel ratio, steel yielding strength, and steel arrangement can not be considered. This research is performed to investigate the consistency and the rationality of the code requirement for determination of column design strength. A nonlinear axial force-moment-curvature analysis was conducted in order to investigate the ductility of reinforced concrete column sections. As the result of ductility analysis, it was found that the ductility at the axial force of $\Phi$cPn=0.1fckAg represented a lock of consistency for the various variable contained sections. Therefore, a more reasonable application method of strength reduction factor is proposed, that is based on the strain ductility index.

An Effect of TIG Dressing on Fatigue Characteristics of Non Load-Carrying Fillet Welded Joints (TIG처리에 따른 하중비전달형 필렛용접부의 피로특성)

  • Jung, Young Hwa;Kyung, Kab Soo;Hong, Sung Wook;Kim, Ik Gyeom;Nam, Wang Hyone
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.5 s.48
    • /
    • pp.617-628
    • /
    • 2000
  • In this study, the 4-point bending test has been performed in order to estimate the effect of TIG-dressing on fatigue strength and fatigue characteristics quantitatively for non load-carrying fillet welded joints subjected to pure bending. As a result of fatigue tests, fatigue strength of as-welded specimens has been satisfied the grade of fatigue strength prescribed in specifications of domestics and AASHTO & JSSC, and fatigue strength at $2{\times}106cycles$ of TIG-dressing specimens has been increased compared with as-welded specimens. As the result of beachmark tests, fatigue cracks have been occurred at several points, where the radius of curvature and flank angle in the weld bead toes are low, and grown as semi-elliptical cracks, then approached to fracture. As a result of finite element analysis, stress concentration factor in weld bead toes has been closely related to the flank angel and radius of curvature, and between these, the radius of curvature has more largely affected in stress concentration factor than flank angle. As a result of fracture mechanics approaches, the crack correction factor of test specimens has been largely affected on stress gradient correction factor in case a/t is below 0.4. From the relations between stress intensity factor range estimated from FEM analysis and fatigue crack growth rate, fatigue life has been correctly calculated.

  • PDF

Study on The Slip Factor Model for Multi-Blades Centrifugal Fan (원심다익송풍기의 미끄럼 계수에 대한 연구)

  • GUO, En-min;KIM, Kwang-Yong;SEO, Seoung-Jin
    • 유체기계공업학회:학술대회논문집
    • /
    • 2002.12a
    • /
    • pp.111-115
    • /
    • 2002
  • The objective of this work is to develop improved slip factor model and correction method to predict flow through impeller in forward-curved centrifugal fan by investigating the validity of various slip factor models. Both steady and unsteady three-dimensional CFD analyses were performed with a commercial code tn validate the slip factor model and the correction method. The results show that the improved slip factor model presented in this paper could provide more accurate predictions for forward-curved centrifugal impeller than the other slip factor models since the presented model takes into account the effect of blade curvature. The comparison with CFD results also shows that the improved slip factor model coupled with the present correction method provides accurate predictions for mass-averaged absolute circumferential velocity at the exit of impeller near and above the flow rate of peaktotal pressure coefficient.

  • PDF