• Title/Summary/Keyword: current-effect

Search Result 10,201, Processing Time 0.038 seconds

Influence of the Density Gradient on the Current of the Electrode Immersed in the Non-uniform Plasma (플라즈마 삽입전극의 전류에 미치는 밀도 구배의 영향)

  • Hwang, Hui-Dong;Gu, Chi-Wuk;Chung, Kyung-Jae;Choe, Jae-Myung;Kim, Gon-Ho;Ko, Kwang-Cheol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.6
    • /
    • pp.504-509
    • /
    • 2011
  • The conducting current of non-uniform plasma immersed electrode consists of ion current and secondary electron emission current caused by the impinging ion current. The ion current is determined by the ion dose passing through the sheath in front of electrode and the ion distribution in front of the electrode plays an important role in the secondary electron emission. The investigation of the distributed plasma and secondary electron effect on electrode ion current was carried out as the stainless steel electrode plugged with quartz tube was immersed in the inductively coupled Ar plasma using the antenna powered by 1 kw and the density profile was measured. After that, the negative voltage was applied by 1 kV~6 kV to measure the conduction current for the analysis of ion current.

Effect of Dopamine on the $Ca^{2+}\;-dependent\;K^+\;currents$ in Isolated Single Gastric Myocytes of the Guinea-pig

  • Rhee, Poong-Lyul;Lee, Sang-Jin;Kim, Sung-Joon;So, In-Suk;Hwang, Sang-Ik;Kim, Ki-Whan
    • The Korean Journal of Physiology
    • /
    • v.27 no.2
    • /
    • pp.139-150
    • /
    • 1993
  • We have reported that dopamine potentiates spontaneous contractions dose-dependently in guinea-pig antral circular muscle strips (Hwang et al, 1991). To clarify the underlying excitatory mechanism of dopamine on the gastric smooth muscle, the effects of dopamine on voltage-dependent $Ca^{2+}\;currents\;and\;Ca^{2+}\;-dependent\;K^+\;currents$ were observed in enzymatically dispersed guinea-pig gastric myocytes using the whole-cell voltage-clamp technique. Experiments were also done using isometric tension recording and conventional intracellular microelectrode techniques. 1) The effect of dopamine on the spontaneous contraction of antral circular muscle strips of the guinea-pig was excitatory in a dose-dependent manner, and was blocked by phentolamine, an ${\alpha}-adrenoceptor$ blocker. 2) The slow waves were not changed by dopamine. 3) The voltage-operated inward $Ca^{2+}$ current was not influenced by dopamine. 4) The $Ca^{2+}\;-dependent\;K^+$ outward current, which might reflect the changes of intracellular calcium concentration, was enhanced by dopamine. This effect was abolished by phentolamine. 5) The enhancing effect of dopamine on the $Ca^{2+}\;-dependent\;K^+$ current disappeared with heparin which is known to block the action of $InsP_3$. From these results, it is suggested that dopamine acts via $InsP_3-mediated\;Ca^{2+}$ mobilization from intracellular stores and such action potentiates the spontaneous contraction of guinea-pig gastric smooth muscle.

  • PDF

Effect of Transcranial Direct Current Stimulation on Movement Variability in Repetitive - Simple Tapping Task

  • Kwon, Yong Hyun;Cho, Jeong Sun
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.1
    • /
    • pp.38-42
    • /
    • 2015
  • Purpose: Accuracy and variability of movement in daily life require synchronization of muscular activities through a specific chronological order of motor performance, which is controlled by higher neural substrates and/or lower motor centers. We attempted to investigate whether transcranial direct current stimulation (tDCS) over primary sensorimotor areas (SM1) could influence movement variability in healthy subjects, using a tapping task. Methods: Twenty six right-handed healthy subjects with no neurological or psychiatric disorders participated in this study. They were randomly and equally assigned to the real tDCS group or sham control group. Direct current with intensity of 1 mA was delivered over their right SM1 for 15 minutes. For estimation of movement variability before and after tDCS, tapping task was measured, and variability was calculated as standard deviation of the inter-tap interval (SD-ITI). Results: At the baseline test, there was no significant difference in SD-ITI between the two groups. In two-way ANOVA with repeated measurement no significant differences were found in a large main effect of group and interaction effect between two main factors (i.e., group factor and time factor (pre-post test)). However, significant findings were observed in a large main effect of the pre-post test. Conclusion: Our findings showed that the anodal tDCS over SM1 for 15 minutes with intensity of 1 mA could enhance consistency of motor execution in a repetitive-simple tapping task. We suggest that tDCS has potential as an adjuvant brain facilitator for improving rhythm and consistency of movement in healthy individuals.

The Effect of Internal Flow on Vortex-Induced Vibration of Marine Riser (Riser의 내부유체 흐름이 소용돌이로 인한 Riser 동적반응에 미치는 영향)

  • Hong, Nam-Seeg;Hsiang Wang
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.2
    • /
    • pp.198-208
    • /
    • 1995
  • Combining Iwan-Blevin's model into the approximated form of the nonlinear model derived for the dynamic analysis of the riser system with the inclusion of internal flow, current-vortex model is developed to investigate the effect of internal flow on vortex-induced vibration due to inline current The riser system includes a steadly flow inside the pipe which is modeled as an extensible or inextensible tubular beam. Galerkin's finite element approximation are implemented to derive the matrix equation of equilibrium for the finite element system. The investigations of the effect of internal flow on vibration due to inline current are performed according to the change of various parameters such as top tension, infernal flow velocity. current velocity, and so on. It is found that the effect of internal flow on vibration due to vortex shedding can be controlled by the increase of top tension. However, careful consideration has to be given, in design point in order to avoid the resonance band occurding near vortex shedding frequency, particularly for the long riser.

  • PDF

The Convergence Effect of Task-Oriented Training and Vibration Stimulation, Transcranial Direct Current Stimulation to Improve Upper Limb Function in Stroke (뇌졸중 환자의 상지기능 개선을 위한 과제 지향적 훈련과 진동 자극, 경두개 직류 전류 자극의 융합 효과)

  • Kim, Sun-Ho
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.9
    • /
    • pp.31-37
    • /
    • 2020
  • The purpose of this study was to investigate the Effect of transcranial direct current stimulation convergence task-oriented training combined with vibration stimulation on hand dexterity and upper limb function in stroke patients. One time 30 minutes 5 times a week for 4 weeks. experimental group of transcranial direct current stimulation convergence task-oriented training combined with vibration stimulation and control group of the task-oriented training combined with vibration stimulation were divided into 10 members. Hand dexterity and upper limb recovery were measured. The experimental group and the control group showed significant improvement in hand dexterity and grasping(p<.05), grasping, and gross movement(p<.05). The experimental group showed a significant improvement in hand dexterity and grasp and grip than the control group. Effect size showed more than small effect in all evaluation items. Based on the results of this study, it is considered that more effective and efficient rehabilitation treatment can be performed in the clinic.

Enhanced Photo Current in n-ZnO/p-Si Diode Via Embedded Ag Nanoparticles for the Solar Cell Application

  • Ko, Young-Uk;Yun, Ho-Jin;Jeong, Kwang-Seok;Kim, Yu-Mi;Yang, Seung-Dong;Kim, Seong-Hyeon;Kim, Jin-Sup;An, Jin-Un;Eom, Ki-Yun;Lee, Hi-Deok;Lee, Ga-Won
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.15 no.1
    • /
    • pp.35-40
    • /
    • 2015
  • In this study, an n-ZnO/p-Si heterojunction diode with embedded Ag nanoparticles was fabricated to investigate the possible improvement of light trapping via the surface plasmon resonance effect for solar cell applications. The Ag nanoparticles were fabricated by the physical sputtering method. The acquired current-voltage curves and optical absorption spectra demonstrated that the application of Ag nanoparticles in the n-ZnO/p-Si interface increased the photo current, particularly in specific wavelength regions. The results indicate that the enhancement of the photo current was caused by the surface plasmon resonance effect generated by the Ag nanoparticles. In addition, minority carrier lifetime measurements showed that the recombination losses caused by the Ag nanoparticles were negligible. These results suggest that the embedding of Ag nanoparticles is a powerful method to improve the performance of n-ZnO/p-Si heterojunction solar cells.

Optimization of GTAW Parameters for Horizontal Welding of a STS316L Pipe (STS316L 강관의 수평자세 용접을 위한 GTAW 용접조건의 최적화)

  • Lee, Hyoung-Keun;Bang, Kyoung-Sik
    • Journal of Welding and Joining
    • /
    • v.33 no.5
    • /
    • pp.47-52
    • /
    • 2015
  • In this study, it was tried to analyze the effects of welding parameters on the weld penetration and aspect ratio when a STS316L pipe was welded in a horizontal position by GTAW. Experiments were systematically designed using a L18 orthogonal array, and the effects of welding parameters were statistically analyzed by ANOVA(Analysis of Variance). The shielding gas type has the largest effect on both the penetration and aspect ratio. The welding current type and shielding gas flow rate have a little effect on the penetration, whereas the electrode tip angle has a little effect on the aspect ratio. When welded at a selected welding condition, which is composed of He shielding gas, pulse current of 300/45 A, electrode tip angle of 90o, and shielding gas flow rate of 30 l/min, the estimated interval at least 95 % confidence was $1.99{\pm}0.18mm$ for the penetration and $0.31{\pm}0.04$ for the aspect ratio. From the confirmation experiments, the average penetration and aspect ratio were well agreed with the estimation as 1.96 mm and 0.30, respectively. Additionally, the effects of the welding speed and welding current on the penetration and aspect ratio were experimented and analyzed by linear regression. The penetration was linearly increased with the decrease of the welding speed and with the increase of the welding current, but the aspect ratio showed a tendency to a little decrease with the increase of both the welding speed and current.

Relaxant Effect of Spermidine on Acethylcholine and High $K^+$-induced Gastric Contractions of Guinea-Pig

  • Kim, Young-Chul;Sim, Jae-Hoon;Choi, Woong;Kim, Chan-Hyung;You, Ra-Young;Xu, Wen-Xie;Lee, Sang-Jin
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.12 no.2
    • /
    • pp.59-64
    • /
    • 2008
  • In our previous study, we found that spermine and putrescine inhibited spontaneous and acetylcholine (ACh)-induced contractions of guinea-pig stomach via inhibition of L-type voltage- dependent calcium current ($VDCC_L$). In this study, we also studied the effect of spermidine on mechanical contractions and calcium channel current ($I_{Ba}$), and then compared its effects to those by spermine and putrescine. Spermidine inhibited spontaneous contraction of the gastric smooth muscle in a concentration-dependent manner ($IC_{50}=1.1{\pm}0.11mM$). Relationship between inhibition of contraction and calcium current by spermidine was studied using 50 mM high $K^+$-induced contraction: Spermidine (5 mM) significantly reduced high $K^+$ (50 mM)-induced contraction to 37${\pm}$4.7% of the control (p<0.05), and inhibitory effect of spermidine on $I_{Ba}$ was also observed at a wide range of test potential in current/voltage (I/V) relationship. Pre- and post-application of spermidine (5 mM) also significantly inhibited carbachol (CCh) and ACh-induced initial and phasic contractions. Finally, caffeine (10 mM)-induced contraction which is activated by $Ca^{2+}$-induced $Ca^{2+}$ release (CICR), was also inhibited by pretreatment of spermidine (5 mM). These findings suggest that spermidine inhibits spontaneous and CCh-induced contraction via inhibition of $VDCC_L$ and $Ca^{2+}$ releasing mechanism in guinea-pig stomach.

Seasonal Variation of Coastal Front by Numerical Simulation in the Southern Sea of Korea (수치모델을 이용한 한국 남해안 전선의 계절변동)

  • Bae, Sang-Wan;Kim, Dong-Sun
    • Journal of Environmental Science International
    • /
    • v.20 no.9
    • /
    • pp.1141-1149
    • /
    • 2011
  • The three-dimensional hydrodynamic model was simulated to understand coastal sea front of formation and seasonal variation in the Southern Sea of Korea. In this study, we used to concept of stratification factor, to realize seasonal distribution of stratification coefficient which of seasonal residual flow, considered with, tide, wind and density effect. Tidal current tends to flow westward during the flood and eastward during ebb. The current by the wind stress showed to be much stronger the coastal than the offshore area in the surface layer. And the current by the horizontal gradient of water density showed to be relatively weak in the coastal area, with little seasonal differences. On the other hand, the flow in the offshore area showed results similar to that of the Tsushima Warm Current. The stratification factor (SHv) was calculated by taking into account the total flow of tide, wind and density effect. In summer, the calculated SHv distribution ranged from 2.0 to 2.5, similar to that of the coastal sea front. The horizontal temperature gradient showed to be strong during the winter, when the vertical stratification is weak. On the other hand, the horizontal gradient became weak in summer, during which vertical stratification is strong. Therefore, it is presume that the strength of vertical stratification and the horizontal temperature gradient affect the position of the coastal sea front.

The Effect of Microcurrent Stimulation on Immediately Early Gene in Pain Induced Model (실험적 통증유발 모델에서 조기발현 유전자에 대한 미세전류자극의 효과)

  • Kim Gye-Yeop;Kim Tae-Youl;Oh Myung-Hwa;Kim Sun-Eun;Cheong Mee-Sun;Suh Young-Sook
    • The Journal of Korean Physical Therapy
    • /
    • v.16 no.3
    • /
    • pp.9-21
    • /
    • 2004
  • The purpose of study is that we will observe the change of c-fos with the immunohistochemistry method and then we will study the effect of micro current stimulation following the frequency after inducing pain to rats with capsaicin. Rat were classified to SD and they have growed for 8 weeks. We classify to four groups, ordinal group is used in experiment I, the group which we induce pain is used in experiment II, the application group which we induce pain and then the high frequency micro current stimulation is used in experiment III, the application group which we induce pain and then the low frequency micro current stimulation is used in experiment IV, we get the following result. Compare with experiment II, experiment III, and experiment IV from acute pain modal in the immunohistochemistry experiment which has c-fos protein as an antigen, c-fos immunoreactive positive neurons significantly after induced pain for two hours(p<0.001). According to these results, from rats induced pain, micro current stimulation effect to reducing pain, but following frequency micro current stimulation theraphy isn't different from immunoreactive c-fos

  • PDF