• Title/Summary/Keyword: current source

Search Result 4,014, Processing Time 0.026 seconds

Operational Characteristics of a Superconducting Fault Current Limiter with an Open Core (개방철심형 고온초전도한류기의 동작 특성)

  • 이찬주;이승제;강형구;김태중;현옥배;고태국
    • Progress in Superconductivity and Cryogenics
    • /
    • v.3 no.1
    • /
    • pp.40-44
    • /
    • 2001
  • Recently. the high-tc superconducting fault col-rent limiters (SFCL) are studied worldwide to be classified as a resistive type or an inductive type such as a magnetic shielding type and a inductive type. The high-tc SFCL wish an open core belongs to the magnetic shielding type SFCL. Unlike conventional magnetic shielding type SFCLS it uses the open core to reduce the mechanical vibrations and installation space, The high-tc SFCL with an open core was designed and manufactured by stacking three BSCCO 2212 tubes. It was tested in the maximum source voltage of 400 Vrms. The results such as the reduction of fault current and impedance of the SFCL are described in this paper. The results show that the fault current in the source voltage of 400 Vrms was reduced to be about 123 Apeak. about 3.9 times greater than the normal state current. Also, the impedance of the high-tc SFCL was about 9${\Omega}$ about 9 times greater than the normal state impedance. The impedance of the SFCL appears just after the fault, and its size is dependent on the source voltage. From the impedance, the inductance of the SFCL was calculated.

  • PDF

The Realization of a Single-Phase Parallel Active Power Filter to Eliminate Harmonics of Source Current Generated by Nonlinear Loads (비선형부하에 의해 발생한 전원 전류의 고조파를 제거하기 위한 단상 병렬형 Active Power Filter의 구현)

  • Jang, Mok-Soon;Lee, Hu-Chan;Kim, Sang-Hoon;Park, Jong-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.220-221
    • /
    • 2006
  • This paper presents a single-phase parallel active power filter with an analog control circuit to eliminate for harmonic source currents generated by nonlinear loads. The proposed system removes the harmonic source currents by injecting a compensation current that is 180' out of phase with the load harmonic current. The detection of the load harmonics is realized by a simple new structure, referred to the Notch Filter with GIC (Generalized Impedance Converter), which has higher Q than existing harmonic detecters and a simpler structure. The compensation current is obtained using the proposed harmonic detection circuit, DC-Link voltage, and output current of the full-bridge inverter controlled current mode PWM controller. The operation of the proposed system is verified experimentally.

  • PDF

A Utility Interactive Photovoltaic Generation System using PWM Chopper and Current Source Inverter (PWM 쵸퍼와 전류형 인버터를 이용한 계통연계형 태양광발전시스템)

  • 이승환;성낙규;오봉환;검성남;이훈구;김용주;한경희
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.323-329
    • /
    • 1998
  • In this paper, we compose of the utility interactive photovoltaic(PV) generation system with a PWM stepdown chopper and a current source inverter. The stepdown chopper is controlled by the several gate pulses (twice frequency of utility voltage, square pulse and without the chopper) of chopper part to reduce pulsation of DC current and size of DC reactor. PV current only is measured for maximum power point tracking without any influence on the variation of insolation and temperature. Therefore, we can control modulation factor of the chopper to operate at maximum power point of solar cell. And, the utility interactive photovoltaic generation system supplies an AC power to the load and the utility power system.

  • PDF

Implementation of Grid-interactive Current Controlled Voltage Source Inverter for Power Conditioning Systems

  • Ko Sung-Hun;Shin Young-Chan;Lee Seong-Ryong
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.4
    • /
    • pp.382-391
    • /
    • 2005
  • Increasing of the nonlinear type power electronics equipment, power conditioning systems (PCS) have been researched and developed for many years in order to compensate for harmonic disturbances and reactive power. PCS's not only improve harmonic current and power factor in the ac grid line but also achieves energy saving used by the renewable energy source (RES). In this paper, the implementation of a current controlled voltage source inverter (CCVSI) using RES for PCS is presented. The basic principle and control algorithm is theoretically analyzed and the design methodology of the system is discussed. The proposed system could achieve power quality control (PQC) to reduce harmonic current and improve power factor, and demand side management (DSM) to supply active power simultaneously, which are both operated by the polarized ramp time (PRT) current control algorithm and the grid-interactive current control algorithm. A 1KVA test model of the CCVSI has been built using IGBT controlled by a digital signal processor (DSP). To verify the proposed system, a comprehensive evaluation with theoretical analysis, simulation and experimental results is presented.

A Modelling Method of a High Impedance Fault in a Distribution System as a Voltage Source using EMTP (EMTP를 이용한 전압원으로의 배전계통 고저항 사고 모델링 기법)

  • Kang, Yong-Choel;Nam, Soon-Ryul;Park, Jong-Keun;Jang, Sung-Il
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1388-1393
    • /
    • 1999
  • A more reliable algorithm for detecting a high impedance fault (HIF) requires fault currents at the relaying point containing information of load condition as well as HIF characteristics. This paper presents a modeling method of an HIF in a distribution system using EMTP. From the voltage and current waveforms of HIF experiment, the voltage-current characteristic is obtained and then piecewise linearized. The proposed method gets several points on the linearized voltage-current curve and then represents nonlinearity as piecewise linear resistances using Transient Analysis of Control Systems (TACS) in EMTP. Thus, an HIF is represented as a voltage source in the first and third quadrants of voltage-current plane. The method is implemented in EMTP and thus the voltage and current at the relaying point can be obtained when an HIF occurs. In this paper, an HIF was simulated on various load conditions and fault conditions in 22.9 [kV] distribution systems.

  • PDF

Robust Deadbeat Current Control Method for Three-Phase Voltage-Source Active Power Filter

  • Nishida, Katsumi;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.4 no.2
    • /
    • pp.102-111
    • /
    • 2004
  • This paper is concerned with a deadbeat current control implementation of shunt-type three-phase active power filter (APF). Although the one-dimensional deadbeat control method can attain time-optimal response of APF compensating current, one sampling period is actually required fur its settling time. This delay is a serious drawback for this control technique. To cancel such a delay and one more delay caused by DSP execution time, the desired APF compensating current has to be predicted two sampling periods ahead. Therefore an adaptive predictor is adopted for the purpose of both predicting the control error of two sampling periods ahead and bringing the robustness to the deadbeat current control system. By adding the adaptive predictor output as an adjustment term to the reference value of half a source voltage period before, settling time is made short in a transient state. On the other hand, in a steady state, THD (total harmonic distortion) of the utility grid side AC source current can be reduced as much as possible, compared to the case that ideal identification of controlled system could be made.

On-line Techniques of SHE-PWN for Current Source GTO Converter (전류형 GTO 컨버터의 SHE-PWM 실시간제어기법)

  • 최재호;팽성일;채경훈
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.4 no.6
    • /
    • pp.523-530
    • /
    • 1999
  • This paper presents the on -line techniques of SHE-PvVI\I for GTO current source converter. The look-up t table is linearized with this proposed method so that the tum-on/off periods of the GTO switches can be c computed in real-time for any modulation index. This allows the rapid and continuous regulation of the DC O output current while producing the sinusoidal AC input current waveform and unity power factor. The l linearized S}lE-PW~I technique and the high power factor control scheme are Prolxlsed and their‘ performance i is tested analytically. The validity of this proposed technique is well verified through the simulation and e experimental results.

  • PDF

Modified Finite Control Set-Model Predictive Controller (MFCS-MPC) for quasi Z-Source Inverters based on a Current Observer

  • Bakeer, Abualkasim;Ismeil, Mohamed A.;Orabi, Mohamed
    • Journal of Power Electronics
    • /
    • v.17 no.3
    • /
    • pp.610-620
    • /
    • 2017
  • The Finite Control Set-Model Predictive Controller (FCS-MPC) for quasi Z-Source Inverters (qZSIs) is designed to reduce the number of sensors by proposing a current observer for the inductor current. Unlike the traditional FCS-MPC algorithm, the proposed model removes the inductor current sensor and observes the inductor current value based on the deposited prior optimized state as well as the capacitor voltage during this state. The proposed observer has been validated versus a typical MPC. Then, a comparative study between the proposed Modified Finite Control Set-Model Predictive Controller (MFCS-MPC) and a linear PID controller is provided under the same operating conditions. This study demonstrates that the dynamic response of the control objectives by MFCS-MPC is faster than that of the PID. On the other hand, the PID controller has a lower Total Harmonic Distortion (THD) when compared to the MFCS-MPC at the same average switching. Experimental results validate both methods using a DSP F28335.

Comparative Study of PI, Fuzzy and Fuzzy tuned PI Controllers for Single-Phase AC-DC Three-Level Converter

  • Gnanavadivel, J;Senthil Kumar, N;Yogalakshmi, P
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.78-90
    • /
    • 2017
  • This paper presents the design of closed loop controllers operating a single-phase AC-DC three-level converter for improving power quality at AC mains. Closed loop inhibits outer voltage controller and inner current controller. Simulations of three level converter with three different voltage and current controller combinations such as PI-Hysteresis, Fuzzy-Hysteresis and Fuzzy tuned PI-Hysteresis are carried out in MATLAB/Simulink. Performance parameters such as input power factor and source current total harmonic distortion (THD) are considered for comparison of the three controller combinations. The fuzzy-tuned PI voltage controller with hysteresis current controller combination provides a better result, with a source-current THD of 0.93% and unity power factor without any source side filter for the three level converter. For load variations of 25% to 100%, a THD of less than 5% is obtained with a maximum value of only 1.67%. Finally, the fuzzy-tuned PI voltage with hysteresis controller combination is implemented in a Xilinx Spartan-6 XC6SLX25 FPGA board for experimental validation of power quality enhancement. A prototype 100 W, 0-24-48 V as output converter is considered for the testing of controller performance. A source-current THD of 1.351% is obtained in the experimental study with a power factor near unity. For load variations of 25% to 100%, the THD is found to be less than 5%, with a maximum value of only 2.698% in the experimental setup which matches with the simulation results.

Utility Interactive Photovoltaic Generation System using PWM Current Source Inverter (PWM 전류형인버터를 이용한 계통연계형 태양광 발전시스템)

  • 박춘우;성낙규;이승환;강승욱;이훈구;한경희
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.109-112
    • /
    • 1996
  • In this paper, we composed utility interactive photovoltaic generation system of current source inverter, and controlled that low harmonic and high power factor are hold by supposing control and compensation method which is concerned with synchronous signal distortion and modulation delay. And we put parallel resonant circuit into dc link, so, magnitude of direct reactance was reduce by restraining direct current pulsation which had accumulation of pulsating power in alternating electrolytic condenser. Also we controlled that modulation factor is operated around maximum output of solar cell.

  • PDF