• Title/Summary/Keyword: current pulse

Search Result 1,867, Processing Time 0.028 seconds

Inactivation of N-Type Calcium Current in Rat Sympathetic Neurons

  • Goo, Yong-Sook;Keith S. Elmslie
    • Proceedings of the Korean Biophysical Society Conference
    • /
    • 1999.06a
    • /
    • pp.52-52
    • /
    • 1999
  • Inactivation of N-type calcium current has been reported to be voltage dependent (Jones & Marks, 1989) and $Ca^{2+}$ dependent(Cox & Dunlap, 1994). We examined inactivation by recording currents from the same cell both in [B $a^{2+}$]$_{o}$ and [C $a^{2+}$]$_{o}$ in rat sympathetic neurons. With 11 mM internal EGTA, fractional inactivation[l-(current amplitude at the end of 5 sec pulse/peak current amplitude [1-(current amplitude at the end of 5 sec pulse/peak current amplitude)] was larger in $Ca^{2+}$(0.80$\pm$0.07) than in $Ba^{2+}$(0.69$\pm$0.10)(n=31, p<0.001), but the current traces were nicely fitted with two exponential components both in $Ba^{2+}$ and $Ca^{2+}$.(omitted)ted)ted)

  • PDF

A New Current Control Method of the Six-pulse Cycloconverter (6 펄스 사이크로콘버터의 새로운 전류제어법)

  • Cho, Kyu-Min;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.800-802
    • /
    • 1993
  • This paper presents a new current control method of the six-pulse cycloconverter for a variable speed drive system of a large capacity ac mortor. It is necessary for a high performance control as a vector control that the output current scheme of the cycloconverter has a good charistic in transient state. A new proposed current control method is that the output current of the cycloconverter is followed after the current reference directly as fast as possible under any condition. Simulation resualts with the proposed new current control method are shown. As a result the validity of the proposed method is confirmed.

  • PDF

The effect of pulse current electrolysis on the composition and themicrostructure of Tin-Zinc electrodeposits (주석-아연 합금도금층의 조성 및 조직에 미치는 파형전류전해의 영향)

  • 예길촌;박성진;김대영
    • Journal of the Korean institute of surface engineering
    • /
    • v.34 no.4
    • /
    • pp.303-312
    • /
    • 2001
  • Composition and microstructure of the tin-zinc alloys electroplated in gluconate bath were studied according to pulse current parameters. The cathode current efficiency increased with both the mean current density and the off-time decrease. Zinc content of the alloy deposits increased with increasing mean current density, while it decreased noticebly with increasing the off-time from 10-30ms to 100-150ms. The preferred orientation of the alloy deposits changed with the increase of peak current density in the sequence of (220)longrightarrow(220)+(420) or (220)+(420)+(321) mixed structure. The equiaxed grain size of the alloy increased with the increase of off-time and the decrease of mean current density.

  • PDF

The effect of pulse parameters on the composition and the structure of Palladium-Nickel alloy electrodeposits (팔라디움-니켈 합금전착층의 조성 및 조직에 미치는 파형전류인자의 영향)

  • 예길촌;오유청
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.5
    • /
    • pp.285-291
    • /
    • 1994
  • The effects of pulse current parameters on the composition and the microstructure of Pd-Ni alloy electrodeposits were studied. The cathode current efficiency of p.c. electrolysis conditions decreased with increasing both mean and peak current density and was lower than those under D.C. electrolysis condition. Palladium content of Pd-Ni alloy increased with increasing both peak current density and on-time, while it decreased with increasing mean current density and duty cycle. The preferred orientation of Pd-Ni alloys changed with increasing mean current density in the sequence of (111)+(110).(100) or (110)longrightarrow(111)longrightarrow(100) or random distribution of crystal structure. The surface morphology of Pd-Ni alloy changed mainly according to the mean current density and was related to the preferred orientation.

  • PDF

Detection of Deep Subsurface Cracks in Thick Stainless Steel Plate

  • Kishore, M.B.;Park, D.G.;Jeong, J.R.;Kim, J.Y.;Jacobs, L.J.;Lee, D.H.
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.312-316
    • /
    • 2015
  • Unlike conventional Eddy Current Test (ECT), Pulsed Eddy Current (PEC) uses a multiple-frequency current pulse through the excitation coil. In the present study, the detection of subsurface cracks using a specially designed probe that allows the detection of a deeper crack with a relatively small current density has been attempted using the PEC technique. The tested sample is a piece of 304 stainless steel (SS304) with a thickness of 30mm. Small electrical discharge machining (EDM) notches were put in the test sample at different depths from the surface to simulate the subsurface cracks in a pipe. The designed PEC probe consists of an excitation coil and a Hall sensor and can detect a subsurface crack as narrow and shallow as 0.2 mm wide and 2 mm deep. The maximum distance between the probe and the defect is 28 mm. The peak amplitude of the detected pulse is used to evaluate the cracks under the sample surface. In time domain analysis, the greater the crack depth the greater the peak amplitude of the detected pulse. The experimental results indicated that the proposed system has the potential to detect the subsurface cracks in stainless steel plates.

Relation between Magnetic Properties and Surface Morphology of Co-Base Alloy Film by Electrodeposition Method (전착법을 이용한 Co계 합금박막의 표면형태와 자기특성과의 관계)

  • Han, Chang-Suk;Kim, Sang-Wook
    • Korean Journal of Materials Research
    • /
    • v.27 no.11
    • /
    • pp.624-630
    • /
    • 2017
  • In this study, we investigated the overpotential of precipitation related to the catalytic activity of electrodes on the initial process of electrodeposition of Co and Co-Ni alloys on polycrystalline Cu substrates. In the case of Co electrodeposition, the surface morphology and the magnetic property change depending on the film thickness, and the relationship with the electrode potential fluctuation was shown. Initially, the deposition potential(-170 mV) of the Cu electrode as a substrate was shown, the electrode potential($E_{dep}$) at the $T_{on}$ of electrodeposition and the deposition potential(-600 mV) of the surface of the electrodeposited Co film after $T_{off}$ and when the pulse current was completed were shown. No significant change in the electrode potential value was observed when the pulse current was energized. However, in a range of number of pulses up to 5, there was a small fluctuation in the values of $E_{dep}$ and $E_{imm}$. In addition, in the Co-Ni alloy electrodeposition, the deposition potential(-280 mV) of the Cu electrode as the substrate exhibited the deposition potential(-615 mV) of the electrodeposited Co-Ni alloy after pulsed current application, the $E_{dep}$ of electrodeposition at the $T_{on}$ of each pulse and the $E_{imm}$ at the $T_{off}$ varied greatly each time the pulse current was applied. From 20 % to less than 90 % of the Co content of the thin film was continuously changed, and the value was constant at a pulse number of 100 or more. In any case, it was found that the shape of the substrate had a great influence.

Study of Pulse Generation Technique for Serial dual Electrode Detection of Amino Acids and Proteins in Flow Injection Analysis

  • Fung, Ying-Sing;Mo, Song-Ying
    • Analytical Science and Technology
    • /
    • v.8 no.4
    • /
    • pp.575-582
    • /
    • 1995
  • A new analytical procedure using a serial dual electrode detector was developed for the analysis of amino acids and proteins. Bromine was generated at the upstream electrode and detected by the downstream electrode. The presence of amino acids and proteins was shown to lower the downstream current but with no apparent effect on the upstream current. This indirect mode of detection can be applied to the determination of amino acids and proteins which are electrochemically inactive or too large to be accessible to the electrode surface for electron exchange. The method is shown capable to determine various amino acids (cystine, tyrosine, lysine, tryptophan, glycine, methionine and arginine) and proteins (cytochrome c, hemoglobin, HAS, a-Amylase, Conalbumin I, Catalase and Myglobin) with linear working range for amino acids between $10^{-6}$ to $10^{-3}M$ and total proteins between $10^{-7}$ to $10^{-3}M$. The method has been applied for the analysis of amino acids and total protein in food using Flow Injection Analysis with results obtained comparable to those using the traditional analytical procedure. Use of pulse generation technique was shown to produce a more stable flow injection analysis peaks for repetitive determination than the use of conventional constant current method which showed increase of the background current after determination over 200 minutes. The pulse method was found to give stable baseline even after 400 minutes. Thus, the method is shown able to provide a suitable analytical procedure for automatic analysis of amino acids and proteins in food by flow injection analysis.

  • PDF

Treatment of Heavy Metals and Phenol in Contaminated Soil Using Direct Current and Pulse Voltage (직류 전원과 펄스 전원을 이용하여 오염된 토양에서의 중금속과 페놀 처리)

  • Choi, Changsik;Hong, Bumeui;Choi, Hee Young;Lee, Eunsil;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.27 no.6
    • /
    • pp.606-611
    • /
    • 2016
  • In this work, the treatment of heavy metals and phenol in the contaminated soil was investigated by applying direct current (DC) and pulse voltage. When the DC was used, the removal efficiencies for Cu, Zn, As, and Pb were 73, 88, 10, and 10%, respectively, and more than 95% for phenol was removed. Furthermore, when a pulse voltage was employed the removal efficiencies for Cu, Zn, As, and Pb were 88, 92, 40, and 40%, respectively, and 87% of phenol was removed. The results indicate that the application of a pulse voltage for the treatment of contaminated soil reduced electro-osmosis, but increased the rate of electric current movement of heavy metals. In addition, the removal efficiencies for As and Pb have been improved due to the enhanced adsorption capacity of clay components in the soil. Therefore, these experimental results could be effectively applied in remediation technology for the treatment of various heavy metals and phenol.

The Effects of Current Types on Through Via Hole Filling for 3D-SiP Application (전류인가 방법이 3D-SiP용 Through Via Hole의 Filling에 미치는 영향)

  • Chang, Gun-Ho;Lee, Jae-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.4
    • /
    • pp.45-50
    • /
    • 2006
  • Copper via filling is the important factor in 3-D stacking interconnection of SiP (system in package). As the packaging density is getting higher, the size of via is getting smaller. When DC electroplating is applied, a defect-free hole cannot be obtained in a small size via hole. To prevent the defects in holes, pulse and pulse reverse current was applied in copper via filling. The holes, $20\and\;50{\mu}m$ in diameter and $100{\sim}190\;{\mu}m$ in height. The holes were prepared by DRIE method. Ta was sputtered for copper diffusion barrier followed by copper seed layer IMP sputtering. Via specimen were filled by DC, pulse and pulse-reverse current electroplating methods. The effects of additives and current types on copper deposits were investigated. Vertical and horizontal cross section of via were observed by SEM to find the defects in via. When pulse-reverse electroplating method was used, defect free via were successfully obtained.

  • PDF