• Title/Summary/Keyword: current phase

Search Result 5,370, Processing Time 0.031 seconds

Three Phase PWM AC/DC Converter with Leading Current Compensation Control (AC Filter Capacitor 에 따른 진상 전류 보상 회로를 갖는 $3{\phi}$ PWM AC/DC 컨버터)

  • Kim, E.S.;Joe, K.Y.;Suh, K.Y.;Lee, H.W.;Kwon, S.K.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.268-270
    • /
    • 1995
  • This paper proposes a novel PWM technique for a three phase current fad type converters. A minor loop compensation method is introduced to compensate leading current and to minimize input line current (Iu) distortion resulting from the resonance between AC filter capacitor and source inductance of power system. This PWM converter has excellent characterics as next. The control system is simply designed, and the operation with unity power factor can be easily obtained by automatic compensating the leading current of the filter circuit. Also. the three phase sinusoidal input current can be obtained.

  • PDF

Study on Characteristics of Leakage Current and Insulation Resistance for a Circuit According to Load Types (부하종류에 따른 회로의 누설전류 및 절연저항 특성 연구)

  • Han, Kyung-Chul;Choi, Yong-Sung
    • Journal of IKEEE
    • /
    • v.23 no.2
    • /
    • pp.364-369
    • /
    • 2019
  • The ratios of compliant branch circuit of leakage current and insulation resistance were 68.4% and 90.8%, respectively at the lamp load, 64.6% and 96.5% at the heat load, 86.7% and 88.9% at the power load. Limit of residual current of the zero phase secondary current value at the zero phase primary current was 100 A when rated primary current 400 A more than. The reason why the ratio of branch circuit of the leakage current was less than the ratio of compliant branch circuit of the insulation resistance might be that the leakage current includes the capacitive leakage current and the zero phase current.

Three-Phase Interleaved Isolated High Efficiency Boost Converter (인터리브 방식 삼상 절연형 고효율 부스트 컨버터)

  • Choi, Jung-Wan;Cha, Han-Ju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.6
    • /
    • pp.496-503
    • /
    • 2009
  • In this paper, a new three-phase interleaved isolated high efficiency boost dc-dc converter with active clamp is proposed. The converter is capable of increased power transfer due to its three-phase power configuration, and it reduces the rms current per phase, thus reducing conduction losses. Further, interleaved operation of three-phase boost converter reduces overall ripple current, which is imposed into fuel cells and realizes smaller sized filter components, increasing effective operating frequency and leading to higher power density. Each output current of three-phase boost converter is combined by the three-phase transformer and flows in the continuous conduction mode by the proposed three-phase PWM strategy. An efficiency of above 96% is mainly achieved by reducing conduction losses and switching losses are reduced by the action of active clamp branches, as well. The proposed converter and three-phase PWM strategy are analyzed, simulated and implemented in hardware. Experimental results are obtained on a 500 W prototype unit, with all of the design verified and analyzed.

Two-Switch Auxiliary Resonant DC Link Snubber-Assisted Three-Phase Soft Switching PWM Sinewave Power Conversion System with Minimized Commutation Power Losses

  • Nagai, Shinichiro;Sato, Shinji;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.4
    • /
    • pp.249-258
    • /
    • 2003
  • This paper presents a high-efficient and cost effective three-phase AC/DC-DC/AC power conversion system with a single two-switch type active Auxiliary Resonant DC Link (ARDCL) snubber circuit, which can minimize the total power dissipation. The active ARDCL snubber circuit is proposed in this paper and its unique features are described. Its operation principle in steady-state is discussed for the three phase AC/DC-DC/AC converter, which is composed of PWM rectifier as power factor correction (PFC) converter, sinewave PWM inverter. In the presented power converter system not only three-phase AC/DC PWM rectifier but also three-phase DC/AC inverter can achieve the stable ZVS commutation for all the power semiconductor devices. It is proved that the proposed three-phase AC/DC-DC/AC converter system is more effective and acceptable than the previous from the cost viewpoint and high efficient consideration. In addition, the proposed two-switch type active auxiliary ARDCL snubber circuit can reduce the peak value of the resonant inductor injection current in order to maximize total system actual efficiency by using the improved DSP based control scheme. Moreover the proposed active auxiliary two-switch ARDCL snubber circuit has the merit so that there is no need to use any sensing devices to detect the voltage and current in the ARDCL sunbber circuit for realizing soft-switching operation. This three-phase AC/DC-DC/AC converter system developed for UPS can achieve the 1.8% higher efficiency and 20dB lower conduction noise than those of the conventional three-phase hard-switching PWM AC/DC-DC/AC converter system. It is proved that actual efficiency of the proposed three-phase AC/DC-DC/AC converter system operating under a condition of soft switching is 88.7% under 10kw output power.

Quench Characteristics of HTSC Elements according to fault types in Integrated Three-Phase (삼상일체화된 자속구속형 SFCL의 사고종류에 따른 소자들의 퀜치 특성)

  • Park, Chung-Ryul;Lee, Jong-Hwa;Park, Sig;Du, Ho-Ik;Lim, Sung-Hun;Choi, Hyo-Sang;Han, Byoung-Sung
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.960-962
    • /
    • 2005
  • In this paper, we investigated the quench characteristics of high-Tc superconducting(HTSC) elements in the integrated three-phase flux-lock type superconducting fault current limiter(SFCL) according to fault types such as the single-line-to-ground fault, the double-line-to-ground fault, the line-to-line fault and the triple-line-to-ground fault. The integrated three-phase flux-lock type SFCL is an upgrade version of single-phase flux-lock type SFCL. The structure of the integrated three-phase flux-lock type SFCL consisted of a three-phase flux-lock reactor wound on an iron core with the ratio of the same turn between coil 1 and coil 2 in each phase. When the SFCL is under the normal condition, the flux generated in the iron core is zero because the flux generated between two coils of each single phase is canceled out. Therefore, the SFCL's impedance is zero, and the SFCL has negligible influence on the power system. However, if a fault occurs in any single one of three phases, the flux generated in the iron core is not zero any more. The flux makes HTSC elements of all phases to quench irrespective of the fault type, which reduces the current in fault phase as well as the current of sound phase. It was obtained that the fault current limiting characteristics of the suggested SFCL were dependent on the quench characteristics of HTSC elements in all three phases.

  • PDF

A Novel Control Strategy of Three-phase, Four-wire UPQC for Power Quality Improvement

  • Pal, Yash;Swarup, A.;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.7 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • The current paper presents a novel control strategy of a three-phase, four-wire Unified Power Quality (UPQC) to improve power quality. The UPQC is realized by the integration of series and shunt active power filters (APF) sharing a common dc bus capacitor. The realization of shunt APF is carried out using a three-phase, four-leg Voltage Source Inverter (VSI), and the series APF is realized using a three-phase, three-leg VSI. To extract the fundamental source voltages as reference signals for series APF, a zero-crossing detector and sample-and-hold circuits are used. For the control of shunt APF, a simple scheme based on the real component of fundamental load current (I $Cos{\Phi}$) with reduced numbers of current sensors is applied. The performance of the applied control algorithm is evaluated in terms of power-factor correction, source neutral current mitigation, load balancing, and mitigation of voltage and current harmonics in a three-phase, four-wire distribution system for different combinations of linear and non-linear loads. The reference signals and sensed signals are used in a hysteresis controller to generate switching signals for shunt and series APFs. In this proposed UPQC control scheme, the current/voltage control is applied to the fundamental supply currents/voltages instead of fast-changing APF currents/voltages, thus reducing the computational delay and the required sensors. MATLAB/Simulink-based simulations that support the functionality of the UPQC are obtained.

Real time phase current estimation for brushless DC motor drive system by using front current of dc-link capacitor (직류단 캐패시터 전단 전류를 이용한 상 전류 추정 알고리즘)

  • Lee, Won;Moon, Jong-Joo;Kim, Jang-Mok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.9
    • /
    • pp.805-811
    • /
    • 2016
  • This paper proposes an estimation algorithm of phase currents of inverter systems with the planar bus bars for brush-less DC (BLDC) motors. The planar bus bar can improve the characteristic of the EMC(Electro-Magnetic Compatibility). In these inverters, a single current sensor of the dc-link measures the sum of a smooth capacitor current and phase currents of brush-less DC motor. Thus, it is essential to extract phase currents from the measured single current to control BLDC motor. Therefore, in this paper, the phase current is estimated by analyzing equivalent circuits of the BLDCM in ON and OFF periods of switching elements. The usefulness of the proposed algorithm is verified through experimental results.

Passive Current Sharing Characteristics of Multi-Phase Synchronous Buck Converter (다상 동기 벅 컨버터의 Passive Current Sharing 특성)

  • Kim, Jeong-Hoon;Cho, Kyung-Sig;Chung, Se-Kyo
    • Proceedings of the KIPE Conference
    • /
    • 2007.07a
    • /
    • pp.175-177
    • /
    • 2007
  • An analysis on a passive current sharing characteristics of a multi-phase synchronous buck converter is presented. The passive current sharing method is simple but its characteristics depend on the converter equivalent resistance and PWM uniformity. In this paper, the load sharing and power consumption of the passive current sharing system for the converter equivalent resistance and duty ratio inequalities are investigated through the simulation and experiment.

  • PDF

Design and Implementation of Solar PV for Power Quality Enhancement in Three-Phase Four-Wire Distribution System

  • Guna Sekar, T.;Anita, R.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.75-82
    • /
    • 2015
  • This paper presents a new technique for enhancing power quality by reducing harmonics in the neutral conductor. Three-Phase Four-Wire (3P4W) system is commonly used where single and three phase loads are connected to Point of Common Coupling (PCC). Due to unbalance loads, the 3P4W distribution system becomes unbalance and current flows in the neutral conductor. If loads are non-linear, then the harmonic content of current will flow in neutral conductor. The neutral current that may flow towards transformer neutral point is compensated by using a series active filter. In order to reduce the harmonic content, the series active filter is connected in series with the neutral conductor by which neutral and phase current harmonics are reduced significantly. In this paper, solar PV based inverter circuit is proposed for compensating neutral current harmonics. The simulation is carried out in MATLAB/SIMULINK and also an experimental setup is developed to verify the effectiveness of the proposed method.

Absolute Evaluation Method to Obtain Ratio Error and Phase Displacement of Current Transformers (전류변성기의 비오차와 위상오차의 절대 평가 기술)

  • Kim, Yoon-Hyoung;Jung, Jae-Kap;Han, Sang-Gil;Koo, Kyung-Wan;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.57 no.2
    • /
    • pp.153-159
    • /
    • 2008
  • We have developed an absolute evaluation method to obtain the ratio error and phase displacement of a current transformer (CT) without any precise standard CT by measuring four parameters in a CT equivalent circuit. The excitation admittance in the CT equivalent circuit can be obtained by employing standard resistors with negligible reactive component. The secondary leakage impedance in the CT equivalent circuit can be measured using a universal impedance bridge. The method was applied to CTs under test with the wide current ratios in the range of 5 A / 5 A - 5,000 A / 5 A and 5 A / 1 A - 5,000 A / 1 A. The ratio error and phase displacement of the CT under test obtained in this study are consistent with those measured at the national institute in Canada using the same CT under test within an expanded uncertainty (k = 2) in the overall current ratios.