• Title/Summary/Keyword: current mode

Search Result 3,000, Processing Time 0.032 seconds

The suppression of high frequency leakage current using a new active Common Mode Voltage Damper (새로운 능동형 커먼 모드 전압 감쇄기를 이용한 고주파 누설전류 억제)

  • Gu Jeong-Hoi;Bin Jae-Goo;Park Sung-Jun;Kim Cheul-U
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.151-154
    • /
    • 2001
  • This paper propose a new active common-mode voltage damper circuit that is capable of suppressing a common-mode voltage produced in the PWM VSI. The new active common mode voltage damper is consisted of a half-bridge inverter and a common mode transformer with a blocking capacitor. Principle of the active common mode damper is as follow; by applying the compensation voltage which has the same amplitude and opposite polarity to the PWM inverter system. So, common mode voltage and high frequency leakage current can be reduced. Simulated and experimental results show that common-mode voltage damper makes contributions to reducing a high frequency leakage current and common-mode voltage.

  • PDF

A Study on the Design of Built-in Current Sensor for High-Speed Iddq Testing (고속 전류 테스팅 구현을 위한 내장형 CMOS 전류 감지기 회로의 설계에 관한 연구)

  • Kim, Hoo-Sung;Park, Sang-Won;Hong, Seung-Woo;Sung, Man-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1254-1257
    • /
    • 2004
  • This paper presents a built-in current sensor(BICS) that can detect defects in CMOS integrated circuits through current testing technique - Iddq test. Current test has recently been known to a complementary testing method because traditional voltage test cannot cover all kinds of bridging defects. So BICS is widely used for current testing. but there are some critical issues - a performance degradation, low speed test, area overhead, etc. The proposed BICS has a two operating mode- normal mode and test mode. Those methods minimize the performance degradation in normal mode. We also used a current-mode differential amplifier that has a input as a current, so we can realize higher speed current testing. Furthermore, only using 10 MOSFETS and 3 inverters, area overhead can be reduced by 6.9%. The circuit is verified by HSPICE simulation with 0.25 urn CMOS process parameter.

  • PDF

A new continuous-time current-mode integrator for realization of low-voltage current-mode CMOS filter (저전압 전류모드 CMOS 필터 구현을 위한 새로운 연속시간 전류모드 적분기)

  • 방준호;조성익;김동용
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.4
    • /
    • pp.1068-1076
    • /
    • 1996
  • In this paper, a new continuous-time current-mode integrator as basic building block of the low-voltage analyog current-mode active filters is proposed. Compared to the current-mode integrator which is proposed by Zele, the proposed current-mode integrator had higher unity gain frequency and output impedance in addition to lower power dissipation. And also, a current-mode third-order lowpass active filter is designed with the proposed current-mode integrator. The designed circuits are fabricated using the ORBIT's $1.2{\mu}{\textrm{m}}$ deouble-poly double-metal CMOS n-well process. The experimental results show that the filter has -3dB cutoff frequency at 44.5MHz and 3mW power dissipation with single 3.3V power supply and also $0.12mm^{2}$ chip area.

  • PDF

Comparison of the Driving Modes of an Audio Power Amplifier Considering the Characteristics of the Loudspeaker: Voltage Drive vs. Current Drive (스피커의 특성을 고려한 음향 전력 증폭기 구동 방식의 비교: 전압 구동 방식과 전류 구동 방식)

  • Eun, Changsoo;Lee, Yu-chil
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1551-1558
    • /
    • 2017
  • Audio power amplifiers have been designed based on the premise that the impedance of loudspeakers is fixed at nominal 4 ohms or 8 ohms. However, it is known that the impedance varies with frequency and takes on the nominal value at some limited frequencies. The principle of the loudspeaker operation reveals that the sound pressure produced by the loudspeaker is proportional to the current flowing in the voice coil, not the voltage between the two terminals. We take the characteristics of the loudspeaker into account and compare the frequency responses of the loudspeaker in voltage-drive mode and current-drive mode via computer simulations, to conclude that the audio amplifier drive mode should be re-considered in an effort to improve the sound quality.

Method for Current-Driving of the Loudspeakers with Class D Audio Power Amplifiers Using Input Signal Pre-Compensation (입력 신호의 전치 보상을 이용한 D 급 음향 전력 증폭기의 스피커 전류 구동 방법)

  • Eun, Changsoo;Lee, Yu-chil
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.9
    • /
    • pp.1068-1075
    • /
    • 2018
  • We propose a method for driving loudspeakers from class D audio power amplifiers in current mode, instead of in conventional voltage mode, which was impossible with the feedback circuitry. Unlike analog audio amplifiers, Class D audio power amplifiers have signal delay between the input and output signals, which makes it difficult to apply the feedback circuitry for current-mode driving. The idea of the pre-distortion scheme used for the compensation of the non-linearity of RF power amplifiers is adapted to remedy the impedance variation effect of the loudspeakers for current driving. The method uses the speaker model for the pre-distorter to compensate for the speaker impedance variation with frequency. The simulation and test results confirms the validity of the proposed method.

Sampler Model of P-type Current Mode Control Utilizing Low Pass Filter (저역 통과 필터를 사용하는 P-type 전류모드제어의 샘플러 모델)

  • Jung, Young-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.388-392
    • /
    • 2012
  • In this paper, a sampler model for the P-type current mode control employing low pass filter is proposed. Even though the frequency response of the compensator used in a P-type current mode control employing low pass filter is similar to that of P-type compensator, the sampler model has to be obtained from the method used in PI-type current mode control. In order to show the usefulness of the proposed method, prediction results of the proposed model are compared to those from the circuit level simulator, PSIM.

A High-speed 8-Bit Current-Mode BICMOS A/D Converter (BICMOS를 이용한 전류형 고속 8비트 A/D변환기)

  • Han, Tae-Hi;Cho, Sang-Woo;Lee, Heui-Deok;Han, Chul-Hi
    • Proceedings of the KIEE Conference
    • /
    • 1991.07a
    • /
    • pp.857-860
    • /
    • 1991
  • This paper describes a High-Speed 8-bit Current-Mode BiCMOS A/D Converter. The characteristics of this A/D Converter are as fellows. First, as ADC is operating in current-mode we can obtain the properties of increase of converting speed, low noise, and wideband. Second, the properties of high switching speed in bipolar transistor and of high packing density, low power consumption in MOS trnsistor are combined. Finally we reduce chip area by designing it with subranging mode and improve the converting speed by performing subtraction directly, which doesn't need D/A convertings, using current switching element. This converter is composed of two 4-bit ADC, current soure array which provides signal and reference current, current comparator and encoding network.

  • PDF

Silicon-based 0.69-inch AMOEL Microdisplay with Integrated Driver Circuits

  • Na, Young-Sun;Kwon, Oh-Kyong
    • Journal of Information Display
    • /
    • v.3 no.3
    • /
    • pp.35-43
    • /
    • 2002
  • Silicon-based 0.69-inch AMOEL microdisplay with integrated driver and timing controller circuits for microdisplay applications has been developed using 0.35 ${\mu}m$ l-poly 4-metal standard CMOS process with 5 V CMOS devices and CMP (Chemical Mechanical Polishing) technology. To reduce the large data programming time consumed in a conventional current programming pixel circuit technique and to achieve uniform display, de-amplifying current mirror pixel circuit and the current-mode data driver circuit with threshold roltage compensation are proposed. The proposed current-mode data driver circuit is inherently immune to the ground-bouncing effect. The Monte-Carlo simulation results show that the proposed current-mode data driver circuit has channel-to-channel non-uniformity of less than ${\pm}$0.6 LSB under ${\pm}$70 mV threshold voltage variaions for both NMOS and PMOS transistors, which gives very good display uniformity.

Common-Mode Current Cancellation Scheme of Half-Bridge Switch-Mode Converter for DC Motor Drive

  • Srisawang, Arnon;Panaudomsup, Sumit;Prempraneerach, Yothin
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1876-1879
    • /
    • 2003
  • Due to the conventional half-bridge switch-mode converters for dc motor drive have been usually using unbalanced circuit topologies which generate common-mode currents through parasitic capacitors distributed between the ground and the dc motor frame such as the heat-sink of switching devices or the frame of the dc motor. This paper describes methods that cancel common-mode current generated in half-bridge switch-mode converters by using circuit balancing technique. The circuit balancing is to make the noise pickup or occurring in both conductor lines, signal and return pathes, is equal in amplitude and opposite in phase so that it will be canceled out in the ground plane. The common-mode current cancellation in the proposed converter is confirmed by experimental results.

  • PDF

Multimode Hybrid Control Strategy of LLC Resonant Converter in Applications with Wide Input Voltage Range

  • Li, Yan;Zhang, Kun;Yang, Shuaifei
    • Journal of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.201-210
    • /
    • 2019
  • This paper proposes a multimode hybrid control strategy that can achieve zero-voltage switching of primary switches and zero-current switching of secondary rectifier diodes in a wide input voltage range for full-bridge LLC resonant converters. When the input voltage is lower than the rated voltage, the converter operates in Mode 1 through the variable-frequency control strategy. When the input voltage is higher than the rated voltage, the converter operates in Mode 2 through the VF and phase-shift control strategy until the switching frequency reaches the upper limit. Then, the converter operates in Mode 3 through the constant-frequency and phase-shift control strategy. The secondary-side diode current will operate in the discontinuous current mode in Modes 1 and 3, whereas it will operate in the boundary current mode in Mode 2. The current RMS value and conduction loss can be reduced in Mode 2. A detailed theoretical analysis of the operation principle, the voltage gain characteristics, and the realization method is presented in this paper. Finally, a 500 W prototype with 100-200 V input voltage and 40 V output voltage is built to verify the feasibility of the multimode hybrid control strategy.