• Title/Summary/Keyword: current limiting characteristics

Search Result 324, Processing Time 0.021 seconds

Operating Characteristics of Arc-induction Type DC Circuit Breaker (아크유도형 DC 차단기의 동작 특성)

  • Park, Sang-Yong;Choi, Hyo-Sang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.981-986
    • /
    • 2018
  • AC(alternating current) CB(circuit breaker) at the fault occurred in the existing AC distribution system is limiting the fault current through zero cross-point. However, DC(direct current) CB does not have zero cross-point. Therefore, arc occurred by on-off operation of DC CB is very huge. Nowadays, many research team are studying the way to decrease breaking time, which is one of the essential conditions in DC CB. We suggested novel arc-induction type DC CB in this paper. The proposed arc-induction type DC CB is composed of the mechanical Arc ring and DC CB. We confirmed the operation of arc-induction type DC CB through the HFSS(High Frequency Structure Simulator) 3D simulation program and performed the experiment for operation characteristics. Results showed that arcing time of the arc-induction type DC CB by using induction ring was faster than existing mechanical DC CB. On the transient system, we confirmed stable operation characteristics of the arc-induction type DC CB through the simulation and experimental results. We expect that the proposed arc-induction type DC CB technology is will go to stay ahead of the existing DC CB technology.

Characteristics of the Flux-lock Type Superconducting Fault Current Limiter According to the Iron Core Conditions (자속구속형 초전도 전류제한기의 철심조건에 따른 특성)

  • Nam, Gueng-Hyun;Lee, Na-Young;Choi, Hyo-Sang;Cho, Guem-Bae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.7
    • /
    • pp.38-45
    • /
    • 2006
  • The superconducting fault current limiters(SFCLs) provide the effect such as enhancement in power system reliability due to limiting the fault current within a few miliseconds. Among various SFCLs we have developed a flux-lock type SFCL and exploited a special design to effectively reduce the fault current according to properly adjustable magnetic field after the short-circuit test. This SFCL consists of two copper coils wound in parallel on the same iron core and a component using the YBCO thin film connected in series to the secondary copper coil. Meanwhile, operating characteristics can be controlled by adjusting the inductances and the winding directions of the coils. To analyze the operational characteristics, we compared closed-loop with open-loop iron core. When the applied voltage was 200[Vrms] in the additive polarity winding, the peak values of the line current the increased up to 30.71[A] in the closed-loop and 32.01[A] in the open-loop iron core, respectively. On the other hand, in the voltages generated at current limiting elements were 220.14[V] in the closed-loop and 142.73[V] in the opal-loop iron core during first-half cycle after fault instant under the same conditions. We confirmed that the open-loop iron core had lower power burden than in the closed-loop iron core. Consequently, we found that the structure of iron core enabled the flux-lock type SFCL at power system to have the flexibility.

The Operational Characteristics of High-speed Interrupter by Fault Types (고장 유형별 고속 인터럽터의 동작 특성)

  • Jeong, In-Sung;Choi, Hyo-Sang;Jung, Byung-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.2
    • /
    • pp.278-283
    • /
    • 2013
  • With the increasing power demands, size of the fault current in electrical grids is steadily increasing, and it exceeds the breaking capacity of circuit breakers. To effectively cope with these problems, a high-speed interrupter was suggested. The high-speed interrupter provides fault current with a bypass to a fault current limiter in case of accidents and consequently, fault current can be restricted. In this study, behavioral characteristics of high-speed interrupter were analyzed by accident types occurred in a distribution system. When accidents occurred, a and b contact of the high-speed interrupter were turned-off and then, turned-on. Accordingly, fault current flowed to the circuit connected to a current limiting element, and the fault current limiter restricted fault current to within a half-cycle. Nevertheless, the behavior of the high-speed interrupter was slowed down by a switching surge. As a result, fault current was confirmed to be restricted not to within the anticipated half-cycle, but to after a half-cycle. Moreover, the behavioral characteristics of the high-speed interrupter changed not only by accident types, but by behaviors of R, S, and T phases. This was due to the errors in stroke lengths of the high-speed interrupters, which resulted in a slight time discrepancy among three interrupters. In addition, the switching behaviors of the b and a contact were confirmed not to have coincided due to the switching surge; b contact behaved first and a contact followed. because of this, accuracy of stroke length and switching surges through the solenoid suction increases may be necessary to resolve.

Fault Current Limiting and Recovery Characteristics's Modeling of SFCL Using Magnetically Coupled Two Coils (자기결합을 이용한 초전도 사고전류 제한기의 사고전류제한 및 회복 특성 모델링)

  • Kim, Jin-Seok;Ahn, Jae-Min;Moon, Jong-Fil;Lim, Sung-Hun;Kim, Jae-Chul;Hyun, Ok-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2007.11b
    • /
    • pp.180-181
    • /
    • 2007
  • In this paper, SFCL using two magnetically coupled coils was modeled and simulated by PSCAD/EMTDC. The simulation was shown that fault current could be adjusted with the inductance ratio and the winding direction of two coils. The limited fault current in case of the additive polarity winding was lower than that of the subtractive polarity. The analysis results were compared with the calculated ones, and both the results agreed.

  • PDF

Design and Fabrication of Wide-band Transient Voltage Blocking Device (광대역 과도전압 차단장치의 설계 및 제작)

  • 송재용;이종혁;길경석
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.330-334
    • /
    • 1999
  • This paper presents a new transient voltage blocking device (TBD) for commucation facilities with low power and high frequency bandwidth. Conventional protection devices have some problems such as low frequency bandwidth, low energy capacity and high remnant voltage. In order to improve these limitations, the new TBD, which consists of a gas tube, avalanche diodes and junction type field effect transistors (JFETs), was designed and fabricated JFETs were used as an active non-linear element and a high speed switching diode with low capacitance limits high current. Therefore the avalanche diodes with low energy capacity are protected from the high current, and the TBD has a very small input capacitance. From the performance test using surge generator, which can produce 1.2/50${\mu}\textrm{s}$ 4.2 k$V_{max}$, 8/20${\mu}\textrm{s}$ 2.1 kA$\sub$max/, it is confirmed that the proposed TBD has an excellent protection performance in tight clamping voltage and limiting current characteristics.

  • PDF

Optimal Design of Matrix-type SFCLs According to Turn Number of Reactors (리액터의 권선수에 따른 매트릭스형 한류기 최적화 설계)

  • Chung, Dong Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.12
    • /
    • pp.1944-1947
    • /
    • 2012
  • In this work, we investigated quench characteristics of matrix-type superconducting fault current limiters (MFCLs) according to the turn number of reactors. The reactors used in MFCLs apply magnetic field to superconducting elements within reactors when fault currents surge into MFCL systems. It makes the fast and simultaneous quenches between superconducting elements. Also reactors decrease the fault power burden of superconducting elements by bypassing the partial fault currents to itself, when quench occurs. These structure proposed in this work can be expected to achieve much more current limiting capacity even though it uses less superconductors compared with other type SFCLs. Three reactors were made by Bakelite. These reactors with the turn number of 190, 380 and 570, had the length of 270 mm and diameter of 80 mm. We reported experimental results, including fault currents, fault voltages and resistance in superconducting elements according to the turn number of reactors. We confirmed that experimental results will be useful in next future plan for the real power grid.

An analysis of harmonic components of current in the power system (전력계통 고주파 전류의 해석)

  • 우형주
    • 전기의세계
    • /
    • v.15 no.1
    • /
    • pp.1-13
    • /
    • 1966
  • The harmonic components of a current in the power system have been known to be harmful to the sound operation of the system. Their occurrence is mainly due to the nonlinear characteristics of magnetic materials which are used in the system. This paper has, therefore, numerically analyze the harmonics from the relation between the magnetic characteristic curve and the harmonic components of a current in the R-L-C circuit. It also has suggested a new method of calculating the magnitudes and phase angles of the harmonic components by means of approximate formulas derived here. The method is expected to apply to the determination of harmonics-limiting conditions in case of the design of such power equipments as transformer, reactor and so on.

  • PDF

Analysis on Power Burden of HTSC Elements Comprising SFCL using Magnetic Coupling of Shunt Reactors (션트리액터의 자기결합을 이용한 초전도전류제한기를 구성하는 초전도소자들의 전력부담 분석)

  • Lim, Sung-Hun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.42-47
    • /
    • 2010
  • The power burden of high-$T_c$ superconducting (HTSC) elements comprising superconducting fault current limiter (SFCL) using magnetic coupling of shunt reactors was analyzed. The magnetically coupled shunt reactors play a role in distributing the even power burden between HTSC elements comprising the SFCL, which contributes to the effective current limiting and recovery characteristics of the SFCL. It was confirmed through the comparative analysis on the SFCLs with both the magnetically coupled and the magnetically uncoupled shunt reactors that the magnetically coupled shunt reactors could improve the SFCL's performance by equalizing the power burden of HTSC elements.

Effect of Metal Mask Screen on Metal-induced Recombination Current and Solar Cell Characteristics (금속 마스크 스크린이 금속 재결합 전류와 태양전지 특성에 미치는 영향)

  • Lee, Uk Chul;Jeong, Myeong Sang;Lee, Joon Sung;Song, Hee-eun;Kang, Min Gu;Park, Sungeun;Chang, Hyo Sik;Lee, Sang Hee
    • Current Photovoltaic Research
    • /
    • v.9 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The mesh mask screen, which is generally used for screen printing metallization of silicon solar cell, requires high squeegee pressure and low printing speed. These requirements are acting as a limiting factor in production yield in photovoltaic industries. In order to improve the productivity, a metal mask, which has high durability and high printing speed, has been researched. In this paper, the characteristics of each solar cell, in which electrodes were formed by using a metal mask and a mesh mask, were analyzed through recombination current density. In particular, the metal-induced recombination current density (Jom) representing the recombination of the emitter-metal interface was calculated using the shading method, and the resulting efficiency and open-circuit voltage were analyzed through the diode equation. As a result of analyzing the proportion of the metal-induced recombination current density to the total emitter recombination current density, it was analyzed that the reduction of the metal-induced recombination current density through the metal mask is an important factor in reducing the total recombination current density of the solar cell.