• Title/Summary/Keyword: current lead

Search Result 1,685, Processing Time 0.033 seconds

Insulation of Winding and Current Lead of the High-Tc Superconducting Magnets for DC Reactor Type SFCL (DC 리액터형 고온초전도한류기용 고온초전도자석의 권선 및 전류리드의 절연)

  • 양성은;배덕권;전우용;김영식;김상현;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.226-229
    • /
    • 2003
  • Following the successful development of practical high temperature superconducting (HTS) wires, there has been renewed activity in the development of superconducting power equipments. HTS equipments must be operated in the coolant, such as liquid nitrogen (L$N_2$) or cooled by cooler, such as GM-cryocooler to maintain the temperature below critical temperature. In this paper, dielectric strength of some insulating materials, such as epoxy, teflon, and glass fiber reinforced plastic (GFRP) in L$N_2$was measured. Surface breakdown voltage of GFRP which is basic property in design of HTS solenoid coil was measured. Epoxy is a goof insulating material but it is fragile at cryogenic temperature. The multi-layer insulating method of current lead is suggested to compensate this fragile property. It consists of teflon tape layer and epoxy layer fixed with texture. Based on these measurements, the 6.6㎸ class HTS magnet for DC reactor type high-T$_{c}$ superconducting fault current limiter (SFCL) was successfully fabricated and tested.d.

  • PDF

Anodic Oxidation of Potassium Iodide Solution (Ⅰ) (요오드화칼륨 수용액의 양극산화 (제1보))

  • Nam, Chong-Woo;Kim, Hark-Joon
    • Journal of the Korean Chemical Society
    • /
    • v.17 no.5
    • /
    • pp.378-384
    • /
    • 1973
  • To investigate the mechanism of the reaction of electrolytic oxidation of iodide to iodate ions, polarization curves are determined in various kinds of solution using electrodeposited lead peroxide and platinum anodes. It was observed from the polarization curves that the limiting current is exists at concentration 1.5 M of potassium iodide, and these limiting current disappeared as potassium hydroxide was added up to concentration of 0.1 M. while in case of platinum anode, limiting current did not appear in dilute potassium iodide solution. These results are owing to the chemical reaction, $PbO_2+2I^{-}+2H^+{\to}PbO+I_2+H_{2}O$ ocurring at the surface of lead peroxide anode. Also, we studied to obtain the optimum conditions of electrolytic preparation of iodate from iodide solution using a cell without the diaphragm. The results are that; (a) addition of potassium dichromate at the anti-reducing agent is proper in concentration of 0.1 g/l, (b) electrolytic temperature is not so much effective in raising the current efficiency, (c) current efficiency is increased with current density, and (d) electrolysis is the most effective in weak alkaline solutions.

  • PDF

A study on BTB HVDC location in metropolitan area considering fault current analysis (고장전류를 고려한 수도권 BTB HVDC 위치선정 연구)

  • Yoon, Min-Han;Jang, Gil-Soo;Park, Jung-Soo;Jang, Byung-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.274-275
    • /
    • 2011
  • Fault current problems is considered a serious issue in the power system because large fault currents not only cause many side effects to the equipments of power system but also lead to severe problems, such as blackouts. This paper deals with the structural analysis and 3-phase fault current stability of the future Seoul metropolitan power system. The simulation composition and analysis are performed with the 4th KEPCO power supply planning data using PSS/e. Through the results of the simulations, it can be observed that the future Seoul metropolitan system results in a fault current which exceeds the circuit breaker (CB) rate. This unremovable fault current can cause critical damage to power system. To resolve the problem, the algorithm for the application of Voltage Sourced Converter Back-to-Back High Voltage Direct Current (VSC BTB HVDC) is being proposed. where the most suitable location for solving fault current problem in Seoul metropolitan area is being implemented.

  • PDF

A Researching about Reducing Leakage Current of Polycrystalline Silicon Thin Film Transistors with Bird's Beak Structure (누설전류 감소를 위한 Bird's Beak 공정을 이용한 다결정 실리콘 박막 트랜지스터의 구조 연구)

  • Lee, Jin-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.24 no.2
    • /
    • pp.112-115
    • /
    • 2011
  • To stabilize the electric characteristic of Silicon Thin Film Transistor, reducing the current leakage is most important issue. To reduce the current leakage, many ideas were suggested. But the increase of mask layer also increased the cost. On this research Bird's Beak process was use to present element. Using Silvaco simulator, it was proven that it was able to reduce current leakage without mask layer. As a result, it was possible to suggest the structure that can reduce the current leakage to 1.39nA without having mask layer increase. Also, I was able to lead the result that electric characteristic (on/off current ratio) was improved compare from conventional structure.

Evaluation of Tolerance of Some Elemental Impurities on Performance of Pb-Ca-Sn Positive Pole Grids of Lead-Acid Batteries

  • Abd El-Rahman, H.A.;Gad-Allah, A.G.;Salih, S.A.;Abd El-Wahab, A.M.
    • Journal of Electrochemical Science and Technology
    • /
    • v.3 no.3
    • /
    • pp.123-134
    • /
    • 2012
  • The electrochemical performance of positive pole grids of lead-acid batteries made of Pb-0.08%Ca-1.1%Sn alloys without and with 0.1 wt% of each of Cu, As or Sb and with 0.1 wt% of Cu, As and Sb combined was investigated by electrochemical methods in 4.0 M $H_2SO_4$. The corrodibility of alloys under open-circuit conditions and constant current charging of the positive pole, the positive pole gassing and the self-discharge of the charged positive pole were studied. All impurities (Cu, As, Sb) were found to decrease the corrosion resistance, $R_{corr}$ after 1/2 hour corrosion, but after 24 hours an improvement in $R_{corr}$ was recorded for Sb containing alloy and the alloy with the three impurities combined. While an individual impurity was found to enhance oxygen evolution reaction, the impurities combined significantly inhibition this reaction and the related water loss problem was improved. Impedance results were found helpful in identification of the species involved in the charging/discharging and the self-discharge of the positive pole. Impurities individually or combined were found to increase the self-discharge during polarization (33-68%), where Sb containing alloy was the worst and impurities combined alloy was the least. The corrosion of the positive pole grid in the constant current charging was found to increase in the presence of impurities by 5-10%. Under open-circuit, the self-discharge of the charged positive grids was found to increase significantly (92-212%) in the presence of impurities, with Sb-containing alloy was the worst. The important result of the study is that the harmful effect of the studied impurities combined was not additive but sometimes lesser than any individual impurity.

Enhanced field emission properties of double-walled carbon nanotubes coated with lead selenide nanoparticles (셀렌화납 코팅을 통한 이중벽 탄소나노튜브의 전계방출특성 향상)

  • Shin, Dong-Hoon;Lee, Cheol-Jin;Choi, Young-Min;Kim, Jong-Ung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.3
    • /
    • pp.594-598
    • /
    • 2010
  • We studied on the field emission properties of double-walled carbon nanotubes (DWCNTs) coated with lead selenide (PbSe) nanoparticles. PbSe nanoparticles were uniformly attached on the surface of the DWCNTs by a simple chemical process. The PbSe-coated DWCNTs showed highly increased emission current density and enhanced emission stability over 20 h, compared with raw DWCNTs. We consider that the enhanced field emission properties of PbSe-coated DWCNTs were attributed to the increased field enhancement factor and lowered work function of the emitters.

Spontaneous Lead Breakage in Implanted Spinal Cord Stimulation Systems

  • Kim, Tae-Hun;Lee, Pyung-Bok;Son, Hye-Min;Choi, Jong-Bum;Moon, Jee-Youn
    • The Korean Journal of Pain
    • /
    • v.23 no.1
    • /
    • pp.78-81
    • /
    • 2010
  • Spinal cord stimulation (SCS) has become an established clinical option for treatment of refractory chronic pain. Current hardware and implantation techniques for SCS are already highly developed and continuously improving; however, equipment failures over the course of long-term treatment are still encountered in a relatively high proportion of the cases treated with it. Percutaneous SCS leads seem to be particularly prone to dislocation and insulation failures. We describe our experience of lead breakage in the inserted spinal cord stimulator to a complex regional pain syndrome patient who obtained satisfactory pain relief after the revision of SCS.

Super Thin 0.25 mm Thickness White LED Lamp with PCB Type Lead Frame (0.25 mm 초박형 두께를 가지는 회로기판형 리드프레임 백색 LED 램프)

  • Yu, Soon-Jae;Kim, Do-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.1
    • /
    • pp.34-37
    • /
    • 2010
  • 0.25 mm thickness super thin surface mounted device LED Lamp is developed with PCB type lead frame in which BT (Bismaleimide Triazine) resin is used. BT resin is removed by a laser beam in order to reduce the thermal resistance below $1\;^{\circ}C/W$ and transfer molding is used with silicone. Compared to conventional 0.4 mm thickness LED lamp, the developed LED lamp can be derived in high current and the luminance of the LED lamp is increased up to 240 mA.

Wetting Property and Reflectivity of Sn-3.5Ag Solder by Plating for LED Lead Frame (LED용 리드프레임 상의 Sn-3.5Ag 솔더 도금의 젖음성 및 반사율)

  • Kee, Se Ho;Xu, Zengfeng;Kim, Won Joong;Jung, Jae Pil
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.8
    • /
    • pp.563-568
    • /
    • 2012
  • The wetting property and reflectivity of Sn-3.5Ag solder which was dip coated on a LED lead frame were investigated. The wettability of molten solder on Cu substrate was evaluated by the wetting balance tester, and surface tension was calculated from maximum withdrawal force and withdrawal time. Temperature of the molten solder in a bath was varied in the range of $250-290^{\circ}C$. With increasing temperature, the surface tension decreased a little. The reflectivity of Sn-3.5Ag coated on a substrate became a little lower than the highest current LED lead frame reflectivity.

New Permanent Magnet Synchronous Motor Current Sensing Phase Delay Compensation Method

  • Park, Sei-Hun;Kim, Il-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.241-246
    • /
    • 2016
  • This paper presents a method that can improve the performance of permanent magnet synchronous motor current control by minimizing the measured current phase delay caused by the Low Pass Filter(LPF) used to cut off the noises that flowed in when feedback currents are measured. Although existing methods that change the Cutoff Frequency of the LPF can minimize phase delays during high speed rotations, their noise cutoff effects are much lower and this may lead to the decline of control performance. Therefore, in this study, an algorithm that can compensate current phase delays through relatively simple calculations from the synchronous motor d-q axis coordinate transformation matrix and the inverse transformation matrix is proposed and the validity of the proposed method is verified by comparing the waveform of the calculated current with the waveform of actual currents through simulations and experiments.