• Title/Summary/Keyword: current division technique

Search Result 243, Processing Time 0.026 seconds

Enlargement of Field-of-View (FOV) of the CCD Camera by the Current Adjustment of the Projection Lens System in the KBSI-HVEM (KBSI-HVEM 투사렌즈 전류제어에 의한 CCD Camera의 Field of View(FOV) 확장)

  • Kim, Young-Min;Shim, Hyo-Sik;Kim, Youn-Joong
    • Applied Microscopy
    • /
    • v.35 no.4
    • /
    • pp.98-104
    • /
    • 2005
  • A FOV (field-of-view) of the HV-MSC (high voltage multi-scan CCD, $1024{\times}1024$ pixels) camera mounted in the post-column HV-GIF (high voltage gatan image filter) has been drastically enlarged by the projection lens current adjustment. An imaging area of the HV-MSC camera obtained at the lowest magnification (2,000x) is $112{\mu}m^2$ which corresponds to the recording area of the film at the magnification of 8,800x, while the achievable recording area is only $0.43{\mu}m^2$ at the same magnification without this technique. Ignoring the image distortion of less than 5%, we have designed an on-site reference graph to estimate projection lens currents for microscope magnifications above 8,800x, where the recording area on the HVMSC is same as that on the film.

The application of new breeding technology based on gene editing in pig industry - A review

  • Tu, Ching-Fu;Chuang, Chin-kai;Yang, Tien-Shuh
    • Animal Bioscience
    • /
    • v.35 no.6
    • /
    • pp.791-803
    • /
    • 2022
  • Genome/gene-editing (GE) techniques, characterized by a low technological barrier, high efficiency, and broad application among organisms, are now being employed not only in medical science but also in agriculture/veterinary science. Different engineered CRISPR/Cas9s have been identified to expand the application of this technology. In pig production, GE is a precise new breeding technology (NBT), and promising outcomes in improving economic traits, such as growth, lean or healthy meat production, animal welfare, and disease resistance, have already been documented and reviewed. These promising achievements in porcine gene editing, including the Myostatin gene knockout (KO) in indigenous breeds to improve lean meat production, the uncoupling protein 1 (UCP1) gene knock-in to enhance piglet thermogenesis and survival under cold stress, the generation of GGTA1 and CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene double KO (dKO) pigs to produce healthy red meat, and the KO or deletion of exon 7 of the CD163 gene to confer resistance to porcine reproductive and respiratory syndrome virus infection, are described in the present article. Other related approaches for such purposes are also discussed. The current trend of global regulations or legislation for GE organisms is that they are exempted from classification as genetically modified organisms (GMOs) if no exogenes are integrated into the genome, according to product-based and not process-based methods. Moreover, an updated case study in the EU showed that current GMO legislation is not fit for purpose in term of NBTs, which contribute to the objectives of the EU's Green Deal and biodiversity strategies and even meet the United Nations' sustainable development goals for a more resilient and sustainable agri-food system. The GE pigs generated via NBT will be exempted from classification as GMOs, and their global valorization and commercialization can be foreseen.

Physical Treatment for Recycling Commercialization of Spent Household Batteries (가정용(家庭用) 폐건전지(廢乾電池)의 재활용(再活用) 상용화(商用化)를 위한 물리적(物理的) 처리(處理))

  • Park, Jin-Tae;Kang, Jin-Gu;Sohn, Jeong-Soo;Yang, Dong-Hyo;Shin, Shun-Myung
    • Resources Recycling
    • /
    • v.15 no.6 s.74
    • /
    • pp.48-55
    • /
    • 2006
  • This study was carried out for establishing the physical recycling technique for commercializing process on household batteries. The procedure involves shape separator, crushing, magnetic separation, classification and eddy current separation in sequence. The separation capacity was 400-600 unit cell/hr with shape separation system. The impurities such as manganese and zinc in the magnetic product were below 0.1% respectively, the concentration of iron was above 99% in spent carbon zinc battery. Also non-magnetic products are composed of 22-30% En, 16-22% Mn, 1-3% Fe in the case oi spent zinc carbon battery. The amounts of other components such as carbon rod, plastics and separator were about 37-50%. From the eddy current separation of nonferrous products, the plate-type zinc components were separated up to 96% with 2,250-2,750 meter/min of the conveyor speed.

Identification of Internal Resistance of Microbial Fuel Cell by Electrochemical Technique and Its Effect on Voltage Change and Organic Matter Reduction Associated with Power Management System (전기화학적 기법에 의한 미생물연료전지 내부저항 특성 파악 및 전력관리시스템 연계 전압 변화와 유기물 저감에 미치는 영향)

  • Jang, Jae Kyung;Park, Hyemin;Kim, Taeyoung;Yang, Yoonseok;Yeo, Jeongjin;Kang, Sukwon;Paek, Yee;Kwon, Jin Kyung
    • Journal of Biomedical Engineering Research
    • /
    • v.39 no.5
    • /
    • pp.220-228
    • /
    • 2018
  • The internal resistance of microbial fuel cell (MFC) using stainless steel skein for oxidizing electrode was investigated and the factors affecting the voltage generation were identified. We also investigated the effect of power management system (PMS) on the usability for MFC and the removal efficiency of organic pollutants. The performance of a stack microbial fuel cell connected with (PMS) or PMS+LED was analyzed by the voltage generation and organic matter reduction. The maximum power density of the unit cells was found to be $5.82W/m^3$ at $200{\Omega}$. The maximum current density was $47.53A/m^3$ without power overshoot even under $1{\Omega}$. The ohmic resistance ($R_s$) and the charge transfer resistance ($R_{ct}$) of the oxidation electrode using stainless steel skein electrode, were $0.56{\Omega}$ and $0.02{\Omega}$, respectively. However, the sum of internal resistance for reduction electrode using graphite felts loaded Pt/C catalyst was $6.64{\Omega}$. Also, in order to understand the internal resistance, the current interruption method was used by changing the external resistance as $50{\Omega}$, $300{\Omega}$, $5k{\Omega}$. It has been shown that the ohm resistance ($R_s$) decreased with the external resistance. In the case of a series-connected microbial fuel cell, the reversal phenomenon occurred even though two cells having the similar performance. However, the output of the PMS constantly remained for 20 hours even when voltage reversal occurred. Also the removal ability of organic pollutants (SCOD) was not reduced. As a result of this study, it was found that buffering effect for a certain period of time when the voltage reversal occurred during the operation of the microbial fuel cell did not have a serious effect on the energy loss or the operation of the microbial fuel cell.

A LSPIV Measurement of the Unsteady Rip Current at Successive Ends of Breaking Wave Crests (연속된 쇄파 파봉선 끝단의 비정상 이안류 LSPIV 계측연구)

  • Choi, Junwoo
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.6
    • /
    • pp.411-419
    • /
    • 2020
  • The experiment of unsteady rip current generated at the successive ends of breaking wave crests of honeycomb pattern waves was conducted in a laboratory wave basin, and its time-varying evolution was observed by using ortho-rectified images. The present experiment utilized the generation of a quasi nodal line of the honeycomb-pattern waves formed by out-of-phase motion of two piston-type wavemakers arranged in the transverse direction, instead of the original honeycomb pattern waves which are generated when two wave trains propagate with slightly different wave directions. The velocities of rip current were measured by using the LSPIV (Large-Scale Particle Image Velocimetry) technique. As a result, the unsteady rip current was generated between successive ends of wave crests, and evolved with its shear fluctuations in this experiment. Also, the time series of LSPIV velocity of the unsteady rip current showd its short component due to waves and its long component due to wave-induced currents.

Study on the Synthesis of HoN Nanoparticles and Magnetocaloric Effect as Magnetic Refrigerant for Hydrogen Re-Liquefaction (수소재액화를 위한 자기냉매용 HoN 나노분말 합성 및 자기열량효과 연구)

  • Kim, Dongsoo;Ahn, Jongbin;Jang, Sehoon;Chung, Kookchae;Kim, Jongwoo;Choi, Chuljin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.25 no.6
    • /
    • pp.594-601
    • /
    • 2014
  • Rare-earth (RE) nitrides can be used as magnetocaloric materials in low temperature. They exhibit ferromagnetism and have Curie temperature in the region from 6 to 70 K. In this study, Holmium nitride (HoN) nano particles were prepared through plasma arc discharge technique and their magnetocaloric properties were studied. Nitrogen gas ($N_2$) was employed as an active element for arc discharge between two electrodes maintained at a constant current. Also, it played an important role not only as a reducing agent but also as an inevitable source of excited nitrogen molecules and nitrogen ions for the formation of HoN phase. Partial pressure of $N_2$ was systematically varied from 0 to 28,000 Pa in order to obtain single phase of HoN with minimal impurities. Magnetic entropy change (${\Delta}S_m$) was calculated with data set measured by PPMS (Physical Property Measurement System). The as-synthesized HoN particles have shown a magnetic entropy change ${\Delta}S_m$) of 27.5 J/kgK in applied field of 50,000 Oe at 14.2 K thereby demonstrating its ability to be applied as an effective magnetic refrigerant towards the re-liquefaction of hydrogen.

Improving the Standoff Compensation in a Density Log (밀도검층 이격보정에 있어서의 기법 개선에 관한 연구)

  • Kim, Jongman;Park, Sung Geun;Jung, Dabin;Kim, Yeonghwa
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.525-532
    • /
    • 2015
  • After comparing the effectiveness of standoff compensation between current techniques using data obtained from a series of borehole model experiments for standoff compensation in 2007, 2008, and 2009, a follow-up study was conducted to find a more effective standoff compensation algorithm, Comparing the results of the application of the conventional spine and ribs technique, and the spine and ribs technique in terms of apparent density shows that the standoff compensation error obtained from the latter method is more than twice that obtained from the former. The larger size of the compensation error from the spine and ribs plot using the radioactive decay equation indicates that there are no benefits in using this equation in standoff compensation. Based on these results, we propose a reverse transform spine and ribs technique by essentially combining the conventional spine and ribs technique and the spine and ribs technique in terms of apparent density.

Channel Evaluation for Abandoned Channel Restoration Using Image Analysis Technique (영상분석기법을 이용한 구하도 복원 대상하천의 하도평가)

  • Hong, Il;Kang, Joon-Gu;Kwon, Bo-Ae;Yeo, Hong-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.5
    • /
    • pp.397-406
    • /
    • 2009
  • River is able to change by various environmental factors. In order to conduct restoration design of abandoned river channels, it is necessary to evaluate the river through the analysis of past and present river channels. River evaluation requires various data, such as geometry, hydraulic and hydrology, but there is a lot of difficulty to understand topographical information of river change on time and space due to a lack of past data by domestic conditions. This study analyzes the changes in past and present river channels and examines the applicability of river channel evaluation through image analysis using aerial photographs and 1918 year's map. Aerial photograph analysis was conducted by applying the image analysis method and GIS analysis method on Cheongmicheon. As a result of this analysis, we have quantitatively identified the form and size of abandoned channels, changes in the vertical-section and cross-section length of rivers, and micro-landform changes. More importantly, we verified that morphological changes in sandbars due to artificial straightening are important data in identifying the state of current river channels. In these results, although image analysis technique has limitations in two-dimensional information from aerial photographs, we were able to evaluate the changes in river channel morphology after artificial maintenance of the river.

Urban Runoff Network Flow Velocity Monitoring System Using Ubiquitous Technique and GIS (Ubiquitous 기술과 GIS를 이용한 도시배수관망 유속측정 시스템 개발)

  • Choi, Changwon;Yi, Jaeeung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5B
    • /
    • pp.479-486
    • /
    • 2010
  • Reliable hydrologic data acquisition is the basic and essential requirement for efficient water management. Especially the acquisition of various stream data in a certain location is very important to construct on alarm system to response an urban flood which occurs frequently due to the effect of climate change. Although the frequency of stream inundation flood occurrence becomes low owing to the consistent stream improvement, the urban flood due to the drainage system problems such as deterioration and bad management occurs continuously. The consistent management and current status understanding of the urban drainage system is essential to reduce the urban flood. The purpose of this study is to develop the urban runoff network flow velocity monitoring system which has the capability of collecting stream data whenever, wherever and to whomever without expert knowledge using Code Division Multiple Access technique and Bluetooth near-distance wireless communication technique. The urban runoff network flow velocity monitoring system consists of three stages. In the first stage, the stream information obtained by using ubiquitous floater is transferred to the server computer. In the second stage, the current state of the urban drainage system is assessed through the server computer. In the last stage, the information is provided to the user through a GUI. As a result of applying, the developed urban runoff network flow velocity monitoring system to Woncheon-Stream in Suwon, the information necessary for urban drainage management can be managed in real time.

Diclofenac, a Non-steroidal Anti-inflammatory Drug, Inhibits L-type $Ca^{2+}$ Channels in Neonatal Rat Ventricular Cardiomyocytes

  • Yarishkin, Oleg V.;Hwang, Eun-Mi;Kim, Dong-Gyu;Yoo, Jae-Cheal;Kang, Sang-Soo;Kim, Deok-Ryoung;Shin, Jae-Hee-Jung;Chung, Hye-Joo;Jeong, Ho-Sang;Kang, Da-Won;Han, Jae-Hee;Park, Jae-Yong;Hong, Seong-Geun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.13 no.6
    • /
    • pp.437-442
    • /
    • 2009
  • A non-steroidal anti-inflammatory drug (NSAID) has many adverse effects including cardiovascular (CV) risk. Diclofenac among the nonselective NSAIDs has the highest CV risk such as congestive heart failure, which resulted commonly from the impaired cardiac pumping due to a disrupted excitationcontraction (E-C) coupling. We investigated the effects of diclofenac on the L-type calcium channels which are essential to the E-C coupling at the level of single ventricular myocytes isolated from neonatal rat heart, using the whole-cell voltage-clamp technique. Only diclofenac of three NSAIDs, including naproxen and ibuprofen, significantly reduced inward whole cell currents. At concentrations higher than $3\;{\mu}M$, diclofenac inhibited reversibly the $Na^+$ current and did irreversibly the L-type $Ca^{2+}$ channels-mediated inward current $(IC_{50}=12.89\pm0.43\;{\mu}M)$ in a dose-dependent manner. However, nifedipine, a well-known L-type channel blocker, effectively inhibited the L-type $Ca^{2+}$ currents but not the $Na^+$ current. Our finding may explain that diclofenac causes the CV risk by the inhibition of L-type $Ca^{2+}$ channel, leading to the impairment of E-C coupling in cardiac myocytes.