• Title/Summary/Keyword: current decay

Search Result 214, Processing Time 0.025 seconds

Experimental Study on the Velocity Structure of 2-D Density Current Induced by Selective Withdrawal (선택취수에 의한 2차원 밀도류의 흐름특성에 관한 실험적 연구)

  • Lyu, Siwan;Kim, Young Do;Cho, Gilje;Kwon, Jae Hyun;Lee, Nam Joo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.825-832
    • /
    • 2009
  • A series of laboratory experiments has been performed to investigate the flow characteristics of 2-dimensional density currents induced by selective withdrawal, which is commonly suggested as a measure for removal of high turbid water from reservoirs. Saltwater has been used to simulate the density stratification over depth and PIV(Particel Image Velocimetry) for observing the velocity structure. Experimental conditions have been established according to Richardson number, which is the dimensionless number that expresses the ratio of potential to kinetic energy. From the experiments, the patterns of longitudinal decay of centerline axial velocity induced by the withdrawal have been distinguished from other experimental cases. The rate of longitudinal decay increase as the Richardson number increases. The variations of volumetric and momentum flux along the longitudinal axis have also shown to be dependent on Richardson number.

New phosphorescent host material: Tetrameric Zinc(II) Cluster

  • Lee, Hyung-Sup;Jeon, Ae-Kyong;Lee, Kyu- Wang;Lee, Sung-Joo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.903-906
    • /
    • 2003
  • Doping a small amount of a phosphorescent dye into an organic light-emitting diodes(OLED) can lead to a significant improvement in the device properties. The fluorescent host materials like TAZ, CBP have been used, but have a problem of rapid decay of efficiency at high current densities. To alleviate this problem, phosphorescent host was introduced. The whole configuration of OELD fabricated was ITO/a-NPD(50nm)/Zn $cluster:Ir(ppy)_{3}(30nm)/BCP{(10nm)/Alq_{3}(20nm)$ /Al:Li. The OLED showed high luminance (> 50,000 $cd/m^{2}$ ) and external efficiency(5.7%). At higher current densities, rapid decay of external quantum efficiency or host emission, which was frequently observed in the fluorescent host system, were not observed.

  • PDF

Field Application of Power Cable Diagnosis System (전력케이블 열화진단기법의 현장적용)

  • Kim, Ju-Yong;Han, Jae-Hong;Song, Il-Keun;Kim, Sang-Jun;Lee, Jae-Bong;Oh, Jae-Hyung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.148-151
    • /
    • 2002
  • In order to prevent the failures of underground distribution power cables we need to measure insulation condition in the field. Until now we used DC high voltage as a power source for the cable diagnosis but it was not proper method to the XLPE insulation cables because DC high voltage can affect sound insulation and can't diagnose exactly insulation degradation. For these reasons we imported isothermal relaxation current measurement system called by KDA-1 from germany but it's reliability did not proved in our URD cables. DC voltage decay measurement system was developed by domestic company but they don't have field experience. In this paper we tried to prove reliability of these two systems in the field. Through the field diagnosis and Ac breakdown test the two systems showed similar results.

  • PDF

Estimation of joint and index dissipation in HTS tape (고온초전도 선재의 접합 및 인덱스손실 평가)

  • 김정호;임준형;장석헌;김규태;주진호;최세용;나완수;강형구;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.59-62
    • /
    • 2003
  • We fabricated two HTS closed coils by using resistive-joint method and the joint resistance of the coil was estimated by field decay technique at 77 K. In addition, we used the Runge-kutta method for the numerical analysis to estimate the decay properties. The joint resistances were evaluated as a function of critical current of HTS closed coil and external field strength of excitation coil. It was observed that joint resistance was independent of critical current and external field strength. It was estimated that joint resistance was 8.0$\times$10$^{-9}$ $\Omega$ to 11.9$\times$10$^{-9}$ $\Omega$ for coils of contact length for 7 cm.

  • PDF

Surface Analysis of Plasma-treated PDMS by XPS and Surface Voltage Decay

  • Youn, Bok-Hee;Park, Chung-Ryul;Kim, Nam-Ryul;Seo, Yu-Jin;Huh, Chang-Su;Lee, Ki-Taek
    • Transactions on Electrical and Electronic Materials
    • /
    • v.3 no.4
    • /
    • pp.10-15
    • /
    • 2002
  • Surface states of polydimethylsiloxane (PDMS) treated by plasma were investigated by the analysis by x-ray photoelectron spectroscopy (XPS) and surface voltage decay. Plasma treatment causes the silica-like(SiO$\_$x/, x=3∼4) oxidative layer, which is confirmed with XPS, and lowers surface resistivity from 1.78$\times$1014 Ω/square to 1.09$\times$10$\^$13/ Ω/square with increasing the plasma treatment time. By measuring the decay time constant of surface voltage, the calculated surface resistivity was compared with the value directly measured by a voltage-current method, so good agreement between two methods was obtained. It was observed that the plasma treatment led to decrease of the thermal activation energy of the surface conduction from 31.0 kJ/mol of untreated specimen to 21.8 kJ/mol. It is found that our results allow the examination of effects of plasma on electrical properties of PDMS.

Two-dimensional Nature of Center-of-mass Excitons Confined in a Single CdMnTe/CdTe/CdMnTe Heterostructure

  • Lee, Woojin;Kim, Minwoo;Yang, Hanyi;Kyhm, Kwangseuk;Murayama, Akihiro;Kheng, Kuntheak;Mariette, Henri;Dang, Le Si
    • Current Optics and Photonics
    • /
    • v.2 no.6
    • /
    • pp.589-594
    • /
    • 2018
  • We have investigated the dimensional nature of center-of-mass exciton confinement states in a CdMnTe/CdTe/CdMnTe heterostructure, where the CdTe well is too wide (144 nm) to confine both electrons and holes but able to confine whole excitons in the center-of-mass coordinate. Fine multiple photoluminescence spectra with a few meV separation were observed at 6 K. From the thickness dependence of the transition rate, they were attributed to even numbered center-of-mass exciton confinement states (N = 2, 4, 6, ${\cdots}$, 18). Dimensionality of the center-of-mass exciton confinement states was also investigated in terms of temperature dependence of radiative decay time. At low temperatures (${\leq}12K$), we found that the ground state excitons are likely localized possibly due to the barrier interface fluctuation, resulting in a constant decay time (~350 ps). With increased temperature (${\geq}12K$), localized excitons are thermally released, giving rise to a linear temperature dependence of radiative decay time as an evidence of two-dimensional nature.

Study on Electrocatalytic Water Oxidation Reaction by Iridium Oxide and Its Bubble Overpotential Effect (산화 이리듐의 물의 산화반응에 대한 버블 과전압 현상과 촉매 특성 연구)

  • Kim, Jeong Joong;Choi, Yong Soo;Kwon, Seong Jung
    • Journal of the Korean Electrochemical Society
    • /
    • v.16 no.2
    • /
    • pp.70-73
    • /
    • 2013
  • Iridium oxide is well known as an electrocatalyst for the water oxidation. Recently, Dr. Bard's group observed the electrocatalytic behavior of individual nanoparticle of Iridium oxide using the electrochemical amplification method by detecting the single nanoparticle collisions at the ultramicroelectrode (UME). However, the electrocatalytic current is decayed as a function of time. In this study, we investigated that the reason of electrocatalytic current decay of water oxidation at Iridium oxide nanoparticles. We identified it is due to the bubble overpotential because the cyclic current decay and recovery were synchronized to the oxygen bubble growth and coming away from an Iridium disk electrode.

Energy extraction system using dual-capacitor switching for quench protection of HTS magnet

  • Choi, Yojong;Lee, Woo Seung;Song, Seunghyun;Jeon, Haeryong;Kang, Hyoungku;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.3
    • /
    • pp.49-53
    • /
    • 2017
  • The superconducting magnets have a large inductance as well as high operating current. Therefore, mega-joule scale energy can be stored in the magnet. The energy stored in the magnet is sufficient to damage the magnet when a quench occurs. Quench heater and dump resistor can be used to protect the magnet. However, using quench heater to create quench resistors through heat transfer can be slower than instantly switching resistors. Also, electrical short, overheating and breakdown can occur due to quench heater. Moreover, the number of dump resistor should be limited to avoid large terminal voltage. Therefore, in this paper, we propose a quench protection method for extracting the energy stored in a magnet by charging and discharging energy through a capacitor switching without increasing resistance. The simulation results show that the proposed system has a faster current decay within the allowable voltage level.

Simultaneous Removal of Cadmium and Copper from a Binary Solution by Cathodic Deposition Using a Spiral-Wound Woven Wire Meshes Packed Bed Rotating Cylinder Electrode

  • Al-Saady, Fouad A.A.;Abbar, Ali H.
    • Journal of Electrochemical Science and Technology
    • /
    • v.12 no.1
    • /
    • pp.58-66
    • /
    • 2021
  • Spiral-wound woven wire meshes packed bed rotating cylinder electrode was used for the simultaneous removal of cadmium (Cd) and copper (Cu) from a binary solution. The effects of weight percent of each metal on the removal and current efficiencies were studied at an operating current of 345A, while the effect of current on the removal efficiency of both metals was investigated at three levels of current (240, 345.and 400 mA). The experiments were carried out at constant rotation speed 800 rpm, pH = 3, and a total concentration of metals (500 ppm). The results showed that the removal efficiency of copper increased from 89% to 99.4% as its weight percent increased from 20% to100%. In a similar fashion, the removal efficiency of cadmium increased from 81% to 97% as its weight percent increased from 20% to100%. The results confirmed that the removal efficiency of any metals declined in the presence of the other. Increasing of current resulted in increasing the removal efficiency of both metals at different weight percents. The results confirmed that current efficiencies for removing of copper and cadmium simultaneously decline with increasing of electrolysis time and weight percent of cadmium or with decreasing the weight percent of copper. Current efficiency was higher at the initial stage of electrolysis for all weight percents of metals. The results showed that the decay of copper concentration was exponential at all weight percents of copper, confirming that the electrodeposition of copper is under mass transfer control in the presence of cadmium. While the decay of cadmium concentration was linear at lower weight percent of cadmium then changed to an exponential behavior at high weight percent of cadmium in the presence of copper.

Effect of Impressed Current System for Corrosion Protection of Rebars in Concrete (콘크리트 중의 철근 부식 억제를 위한 외부전원법의 효과)

  • Moon, Han-Young;Kim, Seong-Soo;Kim, Hong-Sam
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.2
    • /
    • pp.221-230
    • /
    • 1999
  • Corrosion of rebars can occur if there are cracks, moisture and availability of oxygen or carbonation proceeds, chloride penetrates and diffuses in concrete. Once rebars in concrete corrodes, subsequently accompanied with scaling, spalling in concrete cover. As a result of them, the RC structure is seriously deteriorated. In this study, theoretical review and experiments for cathodic protection(CP) have been performed to control corrosion of rebars in concrete contained chlorides and pre-crack. For CP the impressed current system was applied, the protection effect was investigated when rebars was directly contacted with salt water due to crack and open to much chlorides in concrete. In order to investigate the effect of protection, when CP was energized for 1 year, half-cell potential, potential-decay with current density, corrosion ratio, etc. were measured. With the cathodic protection by impressed current system, the depolarized values of all specimen were met NACE Standard, the effect of 34~84% of the ratio of corrosion area and 84~86% of cross-section reduction were calculated.