• Title/Summary/Keyword: curli

Search Result 2, Processing Time 0.015 seconds

Biofilm Forming Ability and Production of Curli and Cellulose in Clinical Isolates of Enterobacteriaceae (생물막형성 장내세균의 Curli 및 Cellulose 세포외 바탕질 분석)

  • Choi, Yeh-Wan;Lee, Hee-Woo;Kim, Sung-Min;Lee, Je-Chul;Lee, Yoo-Chul;Seol, Sung-Yong;Cho, Dong-Taek;Kim, Jung-Min
    • Korean Journal of Microbiology
    • /
    • v.47 no.4
    • /
    • pp.335-341
    • /
    • 2011
  • In this study, 22 clinical isolates of Enterobacteriaceae including Citrobacterfreundii (6 strains), Enterobacter cloacae (5 strains), Enterobacter aerogenes (3 strains), Serratia marcescens (7 strains) and Pantoea spp. (1 strain) were investigated for the biofilm forming ability and biosynthesis of curli and cellulose. Biofilm forming ability was the highest among the isolates of E. cloacae and the lowest among the isolates of E. aerogenes. The expression of the biofilm-forming extracellular matrix components, cellulose and curli fimbriae, was examined by Congo-red (CR) staining and calcofluor staining methods. PCR screening for the presence of curli gene (csgA) revealed that 4 strains of E. cloacae and 1 strain of C. freundii carried the csgA, showing a good correlation between the phenotypic detection of curli fimbriae by CR staining method and the genotypic detection of curli gene by PCR in E. cloacae.

Inhibition of adhesion and biofilm formation in Escherichia coli O157:H7 by diosmin (다이오스민(diosmin)에 의한 병원성 대장균 세포부착 및 생물막 형성 억제)

  • Kim, Hyun Jung;Kim, Seung Min
    • Korean Journal of Food Science and Technology
    • /
    • v.50 no.4
    • /
    • pp.414-419
    • /
    • 2018
  • Escherichia coli O157:H7 is one of the most common foodborne pathogens responsible for outbreaks of hemorrhagic colitis, which can lead to the life-threatening hemolytic-uremic syndrome. In this study, we identified phytochemicals that specifically inhibit the expression of LEE operon in E. coli O157:H7. Among phytochemicals, diosmin decreased the adherence of E. coli O157:H7 towards Caco-2 cells in vitro (p<0.01) and its biofilm formation activity (p<0.05). Quantitative RT-PCR analysis revealed that the transcripts of Ler-regulated genes and genes related to curli production were significantly reduced in the presence of diosmin. However, diosmin does not affect bacterial viability, indicating that the resistance rate to diosmin was remarkably low. Overall, these results provide significant insights into the development of a novel anti-infective agent that is different from conventional antibiotics.