Biofilm Forming Ability and Production of Curli and Cellulose in Clinical Isolates of Enterobacteriaceae

생물막형성 장내세균의 Curli 및 Cellulose 세포외 바탕질 분석

  • Choi, Yeh-Wan (Department of Microbiology, School of Medicine, Kyungpook National University) ;
  • Lee, Hee-Woo (Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University) ;
  • Kim, Sung-Min (Division of Magnetic Resonance Research, Korea Basic Science Institute) ;
  • Lee, Je-Chul (Department of Microbiology, School of Medicine, Kyungpook National University) ;
  • Lee, Yoo-Chul (Department of Microbiology, School of Medicine, Kyungpook National University) ;
  • Seol, Sung-Yong (Department of Microbiology, School of Medicine, Kyungpook National University) ;
  • Cho, Dong-Taek (Department of Microbiology, School of Medicine, Kyungpook National University) ;
  • Kim, Jung-Min (Department of Microbiology, School of Medicine, Kyungpook National University)
  • 최예환 (경북대학교 의학전문대학원 의학과 미생물학교실) ;
  • 이희우 (서울대학교 수의과대학 수의과학연구소) ;
  • 김성민 (한국기초과학지원 연구원 자기공명연구부) ;
  • 이제철 (경북대학교 의학전문대학원 의학과 미생물학교실) ;
  • 이유철 (경북대학교 의학전문대학원 의학과 미생물학교실) ;
  • 설성용 (경북대학교 의학전문대학원 의학과 미생물학교실) ;
  • 조동택 (경북대학교 의학전문대학원 의학과 미생물학교실) ;
  • 김정민 (경북대학교 의학전문대학원 의학과 미생물학교실)
  • Received : 2011.11.04
  • Accepted : 2011.12.05
  • Published : 2011.12.31

Abstract

In this study, 22 clinical isolates of Enterobacteriaceae including Citrobacterfreundii (6 strains), Enterobacter cloacae (5 strains), Enterobacter aerogenes (3 strains), Serratia marcescens (7 strains) and Pantoea spp. (1 strain) were investigated for the biofilm forming ability and biosynthesis of curli and cellulose. Biofilm forming ability was the highest among the isolates of E. cloacae and the lowest among the isolates of E. aerogenes. The expression of the biofilm-forming extracellular matrix components, cellulose and curli fimbriae, was examined by Congo-red (CR) staining and calcofluor staining methods. PCR screening for the presence of curli gene (csgA) revealed that 4 strains of E. cloacae and 1 strain of C. freundii carried the csgA, showing a good correlation between the phenotypic detection of curli fimbriae by CR staining method and the genotypic detection of curli gene by PCR in E. cloacae.

본 연구에서는 병원 감염의 주요 원인균으로 생물막 관련 감염증에서 흔히 분리되고 있는 Citrobacter, Enterobacter 및 Serratia 등의 임상분리 장내세균 22주를 대상으로 생물막 형성능을 조사하고, 생물막의 세포외 바탕질의 구성 성분을 알아보기 위하여 Congo-red 한천배지상의 집락 형상과 calcofluor 염색을 시행하였다. 또한 curli 생성 오페론인 csgBA(C) 유전자의 유무 확인과 csgA 유전자의 염기서열을 규명하였다. $37^{\circ}C$에서 24시간 배양 후 생물막 형성능 분석에서는 2주의 S. marcescens를 제외한 나머지 20주는 모두 생물막 형성능이 있는 것으로, $28^{\circ}C$에서 48시간 배양 후 분석에서는 22주 모두 생물막 형성능이 있는 것으로 확인되었다. Congo-red 한천배지에서의 균집락 형상을 조사한 결과 균속에 따라서 균 집락의 표현형상이 다르게 나타났으며, 동일 균속내에서도 균 집락의 표현형상과 색 농도의 차이가 관찰되어 세포외 바탕질의 주요 성분 및 생성량의 차이가 있음을 시사하였다. 1주의 C. freundii와 4주의 E. cloacae에서 csgBA(C) 유전자 양성을 나타내었다. 염기서열 분석결과, E. cloacae의 csgA는 E. coli의 csgA와 80.9%, E. sakazakii의 csgA와 75.7%, 그리고 C. freundii의 csgA와 67.8%의 상동성이 있는 것으로 나타났다. E. cloacae의 경우 Congo-red 염색의 결과와 curli 유전자 검색 결과가 일치하였을 뿐만 아니라, csgA 유전자를 보유하지 않은 균주의 생물막 형성능이 csgA 유전자를 보유한 균주에 비해 현저하게 낮은 것으로 나타나, curli가 E. cloacae의 생물막 세포외 바탕질 구성성분의 주요 요소일 것으로 추정되었다.

Keywords

References

  1. Chapman, M.R., L.S. Robinson, J.S. Pinkner, R. Roth, J. Heuser, M. Hammar, S. Normark, and S.J. Hultgren. 2002. Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295, 851-855. https://doi.org/10.1126/science.1067484
  2. Costerton, J.W., P.S. Stewart, and E.P. Greenberg. 1999. Bacterial biofilms: a common cause of persistent infections. Science 284, 1318-1322. https://doi.org/10.1126/science.284.5418.1318
  3. Crump, J.A. and P.J. Collignon. 2000. Intravascular catheterassociated infections. Eur. J. Clin. Microbiol. Infect. Dis. 19, 1-8. https://doi.org/10.1007/s100960050001
  4. Donlan, R.M. 2000. Role of biofilms in antimicrobial resistance. ASAIO J. 46, 47-52. https://doi.org/10.1097/00002480-200011000-00037
  5. Donlan, R.M. and J.W. Costerton 2002. Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15, 167-193. https://doi.org/10.1128/CMR.15.2.167-193.2002
  6. Dunne, W.M. Jr. 2002. Bacterial adhesion: seen any good biofilms lately? Clin. Microbiol. Rev. 15, 155-166. https://doi.org/10.1128/CMR.15.2.155-166.2002
  7. El-Azizi, M., S. Rao, T. Kanchanapoom, and N. Khardori. 2005. In vitro activity of vancomycin, quinupristin/dalfopristin, and linezolid against intact and disrupted biofilms of staphylococci. Ann. Clin. Microbiol. Antimicrob. 4, 2. https://doi.org/10.1186/1476-0711-4-2
  8. Gerstel, U. and U. Romling. 2001. Oxygen tension and nutrient starvation are major signals that regulate agfD promoter activity and expression of the multicellular morphotype in Salmonella typhimurium. Environ. Microbiol. 3, 638-648. https://doi.org/10.1046/j.1462-2920.2001.00235.x
  9. Gerstel, U. and U. Romling. 2003. The csgD promoter, a control unit for biofilm formation in Salmonella typhimurium. Res. Microbiol. 154, 659-667. https://doi.org/10.1016/j.resmic.2003.08.005
  10. Gilbert, P., J. Das, and I. Foley. 1997. Biofilm susceptibility to antimicrobials. Adv. Dent. Res. 11, 160-167. https://doi.org/10.1177/08959374970110010701
  11. Heilmann, C., M. Hussain, G. Peters, and F. Gotz. 1997. Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol. Microbiol. 29, 1013-1024.
  12. Larsen, T. and N.E. Fiehn. 1996. Resistance of Streptococcus sanguis biofilms to antimicrobial agents. APMIS 104, 280-284. https://doi.org/10.1111/j.1699-0463.1996.tb00718.x
  13. Mah, T.F. and G.A. O'Toole. 2001. Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol. 9, 34-39. https://doi.org/10.1016/S0966-842X(00)01913-2
  14. Mittelman, M.W. 1999. Recovery and characterization of biofilm bacteria associated with medical devices. Methods Enzymol. 310, 534-551.
  15. Norwood, D.E. and A. Gilmour. 2000. The growth and resistance to sodium hypochlorite of Listeria monocytogenes in a steadystate multispecies biofilm. J. Appl. Microbiol. 88, 512- 520. https://doi.org/10.1046/j.1365-2672.2000.00990.x
  16. Raad, I. 1998. Intravascular-catheter-related infections. Lancet 351, 893-898. https://doi.org/10.1016/S0140-6736(97)10006-X
  17. Romling, U., Z. Bian, M. Hammar, W.D. Sierralta, and S. Normark. 1998. Curli fibers are highly conserved between Salmonella typhimurium and Escherichia coli with respect to operon structure and regulation. J. Bacteriol. 180, 722-731.
  18. Romling, U., M. Rohde, A. Olsen, S. Normark, and J. Reinkoster. 2000. AgfD, the checkpoint of multicellular and aggregative behaviour in Salmonella typhimurium regulates at least two independent pathways. Mol. Microbiol. 36, 10-23. https://doi.org/10.1046/j.1365-2958.2000.01822.x
  19. Romling, U. 2005. Characterization of the rdarmorphotype, a multicellular behaviour in Enterobacteriaceae. Cell. Mol. Life Sci. 62, 1234-1246. https://doi.org/10.1007/s00018-005-4557-x
  20. Stoodley, P., K. Sauer, D.G. Davies, and J.W. Costerton. 2002. Biofilms as complex differentiated communities. Ann. Rev. Microbiol. 56, 187-209. https://doi.org/10.1146/annurev.micro.56.012302.160705
  21. Trautner, B.W. and R.O. Darouiche. 2004. Role of biofilm in catheter-associated urinary tract infection. Am. J. Infect. Control 32, 177-183. https://doi.org/10.1016/j.ajic.2003.08.005
  22. Uhlich, G.A., J.E. Keen, and R.O. Elder. 2001. Mutations in the csgD promoter associated with variations in curli expression in certain strains of Escherichia coli O157:H7. Appl. Environ. Microbiol. 67, 2367-2370. https://doi.org/10.1128/AEM.67.5.2367-2370.2001
  23. van Houdt, R. and C.W. Michiels. 2005. Role of bacterial cell surface structures in Escherichia coli biofilm formation. Res. Microbiol. 156, 626-633. https://doi.org/10.1016/j.resmic.2005.02.005
  24. Vinh, D.C. and J.M. Embil. 2005. Device-related infections: a review. J. Long Term Eff. Med. Implants 15, 467-488. https://doi.org/10.1615/JLongTermEffMedImplants.v15.i5.20
  25. Zelver, N., M. Hamilton, B. Pitts, D. Goeres, D. Walker, P. Sturman, and J. Heersink. 1999. Measuring antimicrobial effects on biofilm bacteria: from laboratory to field. Methods Enzymol. 310, 608-628.
  26. Zogaj, X., W. Bokranz, M. Nimtz, and U. Romling. 2003. Production of cellulose and curli fimbriae by members of the family Enterobacteriaceae isolated from the human gastrointestinal tract. Infect. Immunol. 71, 4151-4158. https://doi.org/10.1128/IAI.71.7.4151-4158.2003
  27. Zogaj, X., M. Nimtz, M. Rohde, W. Bokranz, and U. Romling. 2001. The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol. Microbiol. 39, 1452-1463. https://doi.org/10.1046/j.1365-2958.2001.02337.x