• 제목/요약/키워드: curing behavior

검색결과 356건 처리시간 0.027초

에폭시 접착제의 경화거동 및 접합강도에 미치는 경화촉매제의 영향 (Effect of Curing Agent on the Curing Behavior and Joint Strength of Epoxy Adhesive)

  • 김민수;김해연;유세훈;김종훈;김준기
    • Journal of Welding and Joining
    • /
    • 제29권4호
    • /
    • pp.54-60
    • /
    • 2011
  • Adhesive bonding is one of the most promising joining methods which may substitute for conventional metallurgical joining processes, such as welding, brazing and soldering. Curing behavior and mechanical properties of adhesive joint are largely dependent on the curing agent including hardener and catalyst. In this study, effects of curing system on the curing behavior and single-lap shear strength of epoxy adhesive joint are investigated. Dihydrazide, anhydride and dicyandiamide(DICY) were chosen as hardener and imidazole and triphenylphosphine(TPP) were chosen as catalyst. In curing behavior, TPP showed the delay of the curing rate for DICY and ADH at $160^{\circ}C$, compared to imidazole catalyst due to the high curing onset/peak temperature. DICY seemed to be most beneficial in the joint strength for both steel and Al adherends, although the type of adherends affected the shear strength of epoxy adhesive joint.

아스팔트 도로포장 유지보수(표면처리)용 유화아스팔트의 양생 및 점착거동특성 평가 (Evaluation of Asphalt Emulsions Curing and Adhesive Behavior used in Asphalt Pavement Preservation (Surface Treatments))

  • 임정혁;김영수
    • 한국도로학회논문집
    • /
    • 제16권6호
    • /
    • pp.39-50
    • /
    • 2014
  • PURPOSES : The objective of this study is to evaluate the curing and adhesive behavior of asphalt emulsions including polymer-modified emulsions for chip seals and fog seals. METHODS : For the laboratory testing, the evaporation test, the bitumen bond strength (BBS) test, and the Vialit test are used. Also, the rolling ball test and the damping test are employed to evaluate the curing properties of the fog seal emulsions. In order to conduct all the tests in controled condition, all test procedures are performed in the environmental chamber. The CRS-2L and the SBS CRS-2P emulsions are used as a polymer-modified emulsion, and then unmodified emulsion, the CRS-2, is compared for the evaluation of chip seal performance. For the fog seal performance evaluation, two types of polymer-modified emulsions (FPME-1 and FPME-2) and one of unmodified emulsion, the CSS-1H, are employed. All the tests are performed at different curing times and temperatures. RESULTS AND CONCLUSIONS : Overall, PMEs show better curing and adhesive behavior than non-PMEs regardless of treatments types. Especially, the curing and adhesive behavior of PMEs is much better than non-PMEs before 120 minutes of curing time. Since all the test results indicate that after 120 minutes of curing time the curing adhesive behavior of emulsions, the early curing time, i.e., 120 minutes, plays an important role in the performance of chip seals and fog seals.

아크릴계 하이솔리드 도료의 Rheovibron에 의한 경화거동 연구 (Curing Behavior by Rheovibron of Acrylic High-Solid Coatings)

  • 김대원;황규현;김승진;우종표;박홍수
    • 한국응용과학기술학회지
    • /
    • 제18권2호
    • /
    • pp.142-152
    • /
    • 2001
  • Acrylic resin(ACR) was blended with a curing agent, hexamethoxymethylmela-mine(HMMM), in which blending ratio was 70:30. The curing behavior was examined using Rheovibron. Cross-linking reaction started at $170^{\circ}C$ in 2 min of reaction and curing was completed in 10 min. It was found that the extent of cross-linking increased with the content of acetoacetoxyethyl methacrylate monomer in the ACR.

양생 조건이 알칼리 활성 슬래그 기반 섬유보강 복합재료의 압축강도와 인장거동에 미치는 영향 (Effects of Curing Conditions on Compressive Strength and Tensile Behavior of Alkali-Active Slag-Based Fiber Reinforced Composites)

  • 박세언;최정일;이방연
    • 한국건설순환자원학회논문집
    • /
    • 제9권3호
    • /
    • pp.260-267
    • /
    • 2021
  • 이 연구의 목적은 양생조건이 물-결합재비가 15%인 알칼리 활성 슬래그 기반 복합재료의 압축 및 인장거동에 미치는 영향을 실험적으로 조사하는 것이다. 이를 위하여 양생 조건을 다르게 하여 실험체를 제작한 후 압축강도와 인장실험을 수행하였다. 실험 결과 고온 양생과 기중 양생을 적용함에 따라 매트릭스의 압축강도와 균열강도는 감소한 반면 인장변형성능은 증가하는 것으로 나타났다. 또한 고온 양생과 기중 양생을 통해 복합재료의 균열 간격과 균열폭이 감소하는 것으로 나타났다.

Stress-strain behavior of geopolymer under uniaxial compression

  • Yadollahi, Mehrzad Mohabbi;Benli, Ahmet
    • Computers and Concrete
    • /
    • 제20권4호
    • /
    • pp.381-389
    • /
    • 2017
  • The various types of structural materials that are available in the construction industry nowadays make it necessary to predict their stress-strain behavior. Geopolymer are alternatives for ordinary Portland cement concrete that are made from pozzolans activation. Due to relatively new material, many mechanical specifications of geopolymer are still not yet discovered. In this study, stress-strain behavior has been provided from experiments for unconfined geopolymers. Modulus of Elasticity and stress-strain behavior are critical requirements at analysis process and knowing complete stress-strain curve facilitates structural behavior assessment at nonlinear analysis for structures that have built with geopolymers. This study intends to investigate stress-strain behavior and modulus of elasticity from experimental data that belongs for geopolymers varying in fineness and mix design and curing method. For the sake of behavior determination, 54 types of geopolymer are used. Similar mix proportions are used for samples productions that have different fineness and curing approach. The results indicated that the compressive strength ranges between 7.7 MPa and 43.9 MPa at the age of 28 days curing.

Thermal Curing Behavior and Tensile Properties of Resole Phenol-Formaldehyde Resin/Clay/Cellulose Nanocomposite

  • Park, Byung-Dae;Kadla, John F.
    • Journal of the Korean Wood Science and Technology
    • /
    • 제40권2호
    • /
    • pp.110-122
    • /
    • 2012
  • This study investigated the effects of layered clay on the thermal curing behavior and tensile properties of resole phenol-formaldehyde (PF) resin/clay/cellulose nanocomposites. The thermal curing behavior of the nanocomposite was characterized using conventional differential scanning calorimetry (DSC) and temperature modulated (TMDSC). The addition of clay was found to accelerate resin curing, as measured by peak temperature ($T_p$) and heat of reaction (${\Delta}H$) of the nanocomposite’ curing reaction increasing clay addition decreased $T_p$ with a minimum at 3~5% clay. However, the reversing heat flow and heat capacity showed that the clay addition up to 3% delayed the vitrification process of the resole PF resin in the nanocomposite, indicating an inhibition effect of the clay on curing in the later stages of the reaction. Three different methods were employed to determineactivation energies for the curing reaction of the nanocomposite. Both the Ozawa and Kissinger methods showed the lowest activation energy (E) at 3% clay content. Using the isoconversional method, the activation energy ($E_{\alpha}$) as a function of the degree of conversion was measured and showed that as the degree of cure increased, the $E_{\alpha}$ showed a gradual decrease, and gave the lowest value at 3% nanoclay. The addition of clay improved the tensile strengths of the nanocomposites, although a slight decrease in the elongation at break was observed as the clay content increased. These results demonstrated that the addition of clay to resole PF resins accelerate the curing behavior of the nanocomposites with an optimum level of 3% clay based on the balance between the cure kinetics and tensile properties.

Effect of curing treatments on the material properties of hardened self-compacting concrete

  • Salhi, M.;Ghrici, M.;Li, A.;Bilir, T.
    • Advances in concrete construction
    • /
    • 제5권4호
    • /
    • pp.359-375
    • /
    • 2017
  • This paper presents a study of the properties and behavior of self-compacting concretes (SCC) in the hot climate. The effect of curing environment and the initial water curing period on the properties and behavior of SCC such as compressive strength, ultrasonic pulse velocity (UPV) and sorptivity of the SCC specimens were investigated. Three Water/Binder (W/B) ratios (0.32, 0.38 and 0.44) have been used to obtain three ranges of compressive strength. Five curing methods have been applied on the SCC by varying the duration and the conservation condition of SCC. The results obtained on the compressive strength show that the period of initial water curing of seven days followed by maturation in the hot climate is better in comparison with the four other curing methods. The coefficient of sorptivity is influenced by W/B ratio and the curing methods. It is also shown that the sorptivity coefficient of SCC specimens is very sensitive to the curing condition. The SCC specimens cured in water present a low coefficient of sorptivity regardless of the ratio W/B. Furthermore, the results show that there is a good correlation between ultrasonic pulse velocity and the compressive strength.

Curing Behavior of Phenolic Resin with Humid Atmosphere on The Porous $ZrO_2$ ceramics

  • 윤상현;김장훈;김주영;이준태;이희수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.57.1-57.1
    • /
    • 2011
  • The effects of relative humidity on the properties of the porous $ZrO_2$ ceramics were investigated in terms of the curing behavior of phenolic resin as a binder. The $ZrO_2$ powders containing 5wt% of phenolic resin were conditioned in a consistent chamber condition at a temperature of $50^{\circ}C$ and different humidity levels (25, 50, 75, and 95%) for 1 h. The exposure of humid atmosphere caused changes of density and microstructure in the green bodies. The higher level the powders were exposed to the humid atmosphere, the lower green density was obtained and the more irregular microstructure was observed due to aggregation by the curing of phenolic resin. After firing, the porosity of specimens has risen from 35.7% to 38.1% and Young's modulus has declined in response to the variation of green density. These results could be explained by the degree of resin cure which was associated with the area under the exothermic peak enclosed by a baseline of DSC thermogram curve. Also, the curing behavior of phenolic resin according to relative humidity has been confirmed by decrease of ether groups which have interacted with the phenolic-OH group and the hexamine as a curing agent. Consequently, it could be demonstrated that increase the relative humidity during fabrication of porous $ZrO_2$ diminished the compaction and properties of specimens after firing owing to curing of phenolic resin.

  • PDF

The Mechanical Properties of Alkali Resistance Glass Fiber Reinforced Cement under Different Curing Conditions

  • Jeong, Moon-Young;Song, Jong-Taek
    • The Korean Journal of Ceramics
    • /
    • 제4권3호
    • /
    • pp.189-192
    • /
    • 1998
  • The mechanical properties of alkali resistance (AR) glass fiber reinforced cement(GFRC) under different curing conditions were investigated in this study. The specimens were formed by extrusion process, and then steam cured and autoclaved. An autoclaved specimen showed the elastic-brittle behavior up to 4% of fiber volume fraction. However, it was found that the fracture behavior for cured specimen was changed to the elastic-plastic with crack branches fracture at greater than 3 vol.% of fiber.

  • PDF

Effect of temperature on the behavior of self-compacting concretes and their durability

  • Salhi, M.;Li, A.;Ghrici, M.;Bliard, C.
    • Advances in concrete construction
    • /
    • 제7권4호
    • /
    • pp.277-288
    • /
    • 2019
  • The formulation of self-compacting concretes (SCC) and the study of their properties at the laboratory level were currently well mastered. The aim of this work is to characterize SCC under hot climatic conditions and their effects on the properties of fresh and hardened SCC. Particularly, the effect of the initial wet curing time on the mechanical behavior such as the compressive strength and the durability of the SCCs (acid and sulfate attack) as well as the microstructure of SCCs mixtures. In this study, we used two types of cement, Portland cement and slag cement, three water/binder (W/B) ratio (0.32, 0.38 and 0.44) and five curing modes. The obtained results shows that the compressive strength is strongly influenced by the curing methods, 7-days of curing in the water and then followed by a maturing in a hot climate was the optimal duration for the development of a better compressive strength, regardless of the type of binder and the W/B ratio.