• Title/Summary/Keyword: cultured muscle tissue

Search Result 45, Processing Time 0.025 seconds

A Study on Conferring Orientation to Myoblast for Realizing Tissue of Cultured Meat (배양육 조직구현을 위한 배향성 부여에 관한 연구)

  • Seok, Yong-Joo;Zo, Sun-Mi;Choi, Soon-Mo;Han, Sung Soo
    • Textile Coloration and Finishing
    • /
    • v.34 no.4
    • /
    • pp.284-301
    • /
    • 2022
  • The limitations of food production caused by global warming, consumption of soil fertility, and land shortage have demanded the development of alternative foods. Their market has been increasing, and in particular, there is an urgent need for an alternative meat. Among them, the non-slaughtered cell-cultured meat that can be manufactured in the laboratory, that is, cultured meat, is in the spotlight, which can solve the problem of meat consumption while including the advantages of meat. It is classified into minced cultured meat and structured one with a structure similar to that of real meat. The latter is currently facing limitations related scaffolds, cells, and the multiplicative problems, and many attempts are being made to solve them. The complex problem is related to secure texture and taste as well as structural similarity to actual meat. To solve the problems, it is necessary to lay emphasis on cells, there are fat cells and vascular cells, and the most fundamental cells, muscle cells. These are the main cells that control the texture and nutrients of meat, and unlike other cells, they grow in the form of fibers. A myofibril (also known as a muscle fibril) is a basic rod-like organelle of a muscle cell, which is a quantitatively major component of meat, and one of the tissues that maintain the appearance of the body and bones. In this review article, we focused on the growth of muscle cells into long, tubular cells known as muscle fibers using the fabricated fibrous scaffold, and reviewed not only research results for muscle tissue engineering but also various results in the related fields for the last five years.

Observation of Muscle Structure and DSC Measurement of Collagen of the Cultured and Wild Red Sea Bream and Flounder. (양식 및 자연산 도미와 넙치 어육 중의 콜라겐 DSC 측정 및 근육 조직 관찰)

  • 이경희;이영순
    • Korean journal of food and cookery science
    • /
    • v.17 no.6
    • /
    • pp.549-554
    • /
    • 2001
  • Thermal measurements were made for connective tissues of 5 different fish muscles by using a differential scanning calorimeter(DSC), and connective tissues between muscle fibers and the cross sections of muscle fibers were observed by a light microscope. Red sea bream(cultured and wild) and flounder(cultured, cultured with obosan and wild) were used in this study. It was found that the connective tissues of cultured and frozen fish muscle required less endothermic enthalpy and the endothermic peak temperature was lower than those of wild and fresh ones when they were shrunken and denatured. Therefore, it is likely that the former are more unstable to heat than the latter. The cultured flounder fed with obosan and wild flounder which contained more collagen than cultured flounder and the wild red sea bream showed clear connective tissues between fibers. The cross-section of cultured fish muscle fiber was larger than that of wild one. From these results, collagen content and thermal properties of collagen, cross section of muscle fibers seemed to contribute to the textural difference between wild and cultured fish.

  • PDF

Effects of exercise on myokine gene expression in horse skeletal muscles

  • Lee, Hyo Gun;Choi, Jae-Young;Park, Jung-Woong;Park, Tae Sub;Song, Ki-Duk;Shin, Donghyun;Cho, Byung-Wook
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.3
    • /
    • pp.350-356
    • /
    • 2019
  • Objective: To examine the regulatory effects of exercise on myokine expression in horse skeletal muscle cells, we compared the expression of several myokine genes (interleukin 6 [IL-6], IL-8, chemokine [C-X-C motif] ligand 2 [CXCL2], and chemokine [C-C motif] ligand 4 [CCL4]) after a single bout of exercise in horses. Furthermore, to establish in vitro systems for the validation of exercise effects, we cultured horse skeletal muscle cells and confirmed the expression of these genes after treatment with hydrogen peroxide. Methods: The mRNA expression of IL-6, IL-8, CXCL2, and CCL4 after exercise in skeletal muscle tissue was confirmed using quantitative-reverse transcriptase polymerase chain reactions (qRT-PCR). We then extracted horse muscle cells from the skeletal muscle tissue of a neonatal Thoroughbred. Myokine expression after hydrogen peroxide treatments was confirmed using qRT-PCR in horse skeletal muscle cells. Results: IL-6, IL-8, CXCL2, and CCL4 expression in Thoroughbred and Jeju horse skeletal muscles significantly increased after exercise. We stably maintained horse skeletal muscle cells in culture and confirmed the expression of the myogenic marker, myoblast determination protein (MyoD). Moreover, myokine expression was validated using hydrogen peroxide ($H_2O_2$)-treated horse skeletal muscle cells. The patterns of myokine expression in muscle cells were found to be similar to those observed in skeletal muscle tissue. Conclusion: We confirmed that several myokines involved in inflammation were induced by exercise in horse skeletal muscle tissue. In addition, we successfully cultured horse skeletal muscle cells and established an in vitro system to validate associated gene expression and function. This study will provide a valuable system for studying the function of exercise-related genes in the future.

Effect of Chicken Age on Proliferation and Differentiation Abilities of Muscle Stem Cells and Nutritional Characteristics of Cultured Meat Tissue

  • Chan-Jin Kim;So-Hee Kim;Eun-Yeong Lee;Young-Hwa Hwang;Seung-Yun Lee;Seon-Tea Joo
    • Food Science of Animal Resources
    • /
    • v.44 no.5
    • /
    • pp.1167-1180
    • /
    • 2024
  • This study aimed to investigate effects of chicken age on proliferation and differentiation capacity of muscle satellite cells (MSCs) and to determine total amino acid contents of cultured meat (CM) produced. Chicken MSCs (cMSCs) were isolated from hindlimb muscles of broiler chickens at 5-week-old (5W) and 19-embryonic-day (19ED), respectively. Proliferation abilities (population doubling time and cell counting kit 8) of cMSCs from 19ED were significantly higher than those from 5W (p<0.05). Likewise, both myotube formation area and expression of myosin heavy chain heavy of cMSCs from 19ED were significantly higher than those from 5W (p<0.05). After cMSCs were serially subcultured for long-term cultivation in 2D flasks to produce cultured meat tissue (CMT), total amino acid contents of CMT showed no significant difference between 5W and 19ED chickens (p>0.05). This finding suggests that cMSCs from chicken embryos are more suitable for improving the production efficiency of CM than those derived from young chickens.

In vitro and in vivo evaluation of tissue-cultured mountain ginseng on penile erection

  • Lee, Ho Sung;Lee, Young Joo;Chung, Yoon Hee;Lee, Moo Yeol;Kim, Sung Tae;Ko, Sung Kwon;Momoi, Mariko;Kondoh, Yutaka;Sasaki, Fumio;Jeong, Ji Hoon
    • Journal of Ginseng Research
    • /
    • v.40 no.4
    • /
    • pp.334-343
    • /
    • 2016
  • Background: Progressed tissue culture techniques have allowed us to easily obtain mass products of tissue-cultured mountain ginseng over 100 yr old (TCMG-100). We investigated the effects of TCMG-100 extract on erectile function using in vitro and in vivo studies. Methods: To examine the relaxation effects and mechanisms of action of TCMG-100 on rabbit cavernosal strips evaluated in an organ bath. To investigate the long-term treatment effect of TCMG-100, 8-wk administration was performed. After administration of TCMG-100, intracavernosal pressure, cyclic guanosine monophosphate and nitric oxide (NO) levels of cavernosal tissue, serum testosterone level, histological observation of collagen fiber, endothelium, smooth muscle cell, and transforming growth factor-${\beta}1$ were investigated. Results: TCMG-100 extract displayed dose-dependent relaxation effects on precontracted rabbit corporal smooth muscle. The TCMG-100-induced relaxation was significantly reduced by removing the endothelium, and treatment with an NO synthase inhibitor or NO scavenger. Eight weeks of TCMG-100 administration increased intracavernosal pressure in a rat model. The levels of cyclic guanosine monophosphate and NO in the corpus callosum and serum testosterone level were also increased by TCMG-100 treatment. Furthermore, histological evaluation of collagen, smooth muscle, and endothelium showed increases in endothelium and smooth muscle, and a decrease in transforming growth factor-${\beta}1$ expression. Conclusion: These relaxation effects on corporal smooth muscle and increased erectile function suggest that TCMG-100 might be used as an alternative herbal medicine to improve erectile function.

Comparative Study of Seeding and Culture Methods to Vascular Smooth Muscle Cells on Biodegradable Scaffold

  • Kim, Dong-Ik;Park, Hee-Jung;Eo, Hyun-Seoun;Suh, Soo-Won;Hong, Ji-Hee;Lee, Min-Jae;Kim, Jong-Sung;Jang, In-Sung;Kim, Byung-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.4
    • /
    • pp.707-714
    • /
    • 2004
  • How to improve the cell culture method on scaffolds is important in the tissue engineering fileld. In this study, we optimized seeding and culture methods to vascular smooth muscle cells (VSMCs) on biodegradable polymer scaffold. The primary culture of VSMCs obtained from canine external jugular vein was accomplished by applying the explant-derived method. The primary cultured VSMCs were seeded into scaffolds and then cultured by using various different methods; static or dynamic seeding, static or dynamic culture. The difference in proliferative response of VSMCs was analyzed with an alamar blue assay. Cell-polymer construct was examined by histochemical method and scanning electron microscopy. Mesh type scaffold ($10 \times 10 \times0.4 mm$) was made of polyglycolic acid (PGA) suture thread. The PGA mesh type scaffold was 45% in porosity, and 0.03 g in weight. The primary cultured VSMCs were confirmed with immunohistochemical staining using monoclonal anti-$\alpha$-smooth muscle actin. The density and distribution of proliferated VSMCs within the scaffold and cellular adherence on the surface of the scaffold showed better results in the static seeding condition than in the dynamic condition. Under the same condition of seeding method as the static condition, the dynamic culture condition showed enhanced proliferation rates of the VSMCs when compared to the static culture condition. In conclusion, to improve the VSMCs proliferation in vitro, static seeding is better than the dynamic condition. In the culture condition, however, culture under the dynamic status is better than the static condition. This was a pilot study to manufacture artificial vascular vessel by tissue engineering.

Total Mercury Content and Risk Assessment of Farmed Fish Tissues (양식산 어류의 부위별 총수은 함량 및 위해도 평가)

  • Choi, WooSeok;Yoon, Minchul;Jo, MiRa;Kwon, Ji Young;Son, KwangTae;Kim, Ji Hoe;Lee, Tae Seek
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.49 no.1
    • /
    • pp.7-12
    • /
    • 2016
  • Total mercury (TM) is a hazardous element that is of particular concern to human health. Due to the diversity of dietary habits among fishes, tissue-specific analysis of hazardous elements is necessary. In this study, the tissue-specific TM in cultured fish was analyzed to conduct risk assessment. The highest concentrations of TM were found in the farmed marine fish Pagrus major (0.111 mg/kg) and in the farmed freshwater fish Channa argus (0.162 mg/kg). TM concentration was significantly correlated with total fish length (P<0.01). Significant differences in TM were found between three types of fish tissue, with the concentration in fish muscle being significantly higher than those of gill or liver (P<0.01). Moreover, the tissue-specific TM concentrations of farmed freshwater fish were significantly higher than those of farmed marine fish (P<0.01). According to the risk assessment, the TM body exposure rate of muscle and liver in cultured fishes ranged from 0.001 to 0.389% of the Provisional Tolerable Weekly Intake. Therefore, these results showing the tissue-specific TM contents of cultured fish could be useful to assess the health risks of Korean dietary habits.

Cloning and characterization of a cDNA encoding a paired box protein, PAX7, from black sea bream, Acanthopagrus schlegelii

  • Choi, Jae Hoon;Han, Dan Hee;Gong, Seung Pyo
    • Journal of Animal Reproduction and Biotechnology
    • /
    • v.36 no.4
    • /
    • pp.314-322
    • /
    • 2021
  • Paired box protein, PAX7, is a key molecule for the specification, maintenance and skeletal muscle regeneration of muscle satellite cells. In this study, we identified and characterized the cDNA and amino acid sequences of PAX7 from black sea bream (Acanthopagrus schlegelii) via molecular cloning and sequence analysis. A. schlegelii PAX7 cDNA was comprised of 1,524 bp encoding 507 amino acids and multiple sequence alignment analysis of the translated amino acids showed that it contained three domains including paired DNA-binding domain, homeobox domain and OAR domain which were well conserved across various animal species investigated. Pairwise Sequence Alignment indicated that A. schlegelii PAX7 had the same amino acid sequences with that of yellowfin seabream (A. latus) and 99.8% identity and similarity with that of gilt-head bream (Sparus aurata). Molecular phylogenetic analysis confirmed that A. schlegelii PAX7 formed a monophyletic group with those of teleost and most closely related with those of the fish that belong to Sparidae family including A. latus and S. aurata. In the investigation of its tissue specific mRNA expression, the expression was specifically identified in skeletal muscle tissue and a weak expression was also shown in gonad tissue. The cultured cells derived from skeletal muscle tissues expressed PAX7 mRNA at early passage but the expression was not observed after several times of subculture.

A Comparative Study on the Taste Characteristics of Satellite Cell Cultured Meat Derived from Chicken and Cattle Muscles

  • Joo, Seon-Tea;Choi, Jung-Suk;Hur, Sun-Jin;Kim, Gap-Don;Kim, Chan-Jin;Lee, Eun-Yeong;Bakhsh, Allah;Hwang, Young-Hwa
    • Food Science of Animal Resources
    • /
    • v.42 no.1
    • /
    • pp.175-185
    • /
    • 2022
  • This study investigated the amino acid and nucleotide-related compound composition and taste characteristics of cultured muscle tissue (CMT) obtained by culturing satellite cells isolated from chicken and cattle and compared them to those of traditional meat (TM). The content of all amino acids except valine and tyrosine was significantly different between CMT and TM (p<0.05). The amount of glutamic acid was not significantly different between CMT and TM in cattle, but the glutamic acid in chicken CMT was lower than that of TM (p<0.05). Among the nucleotide-related compounds, only the content of inosine-5'-monophosphate (IMP) was significant, and the amount of IMP in CMT derived from chicken and cattle was significantly lower than that of TM (p<0.05). There were significant differences in the taste characteristics assessed by an electronic tongue system, and the umami, bitterness, and sourness values of CMT were significantly lower than those of TM from both chicken and cattle (p<0.05). The results of the present study suggest that it is necessary to develop a satellite cell culture method that could increase the umami and bitterness intensity of CMT and adjust the composition of the growth medium to produce cultured meat with a taste similar to that of TM.

Oxolinic acid Residue in the cultured Eel Tissues and its Change to Heating Process (시판중인 뱀장어중의 Oxolinic acid 잔류량과 가열에 의한 변화)

  • 김경호;송미란;최선남;최민순;박관하
    • Journal of Food Hygiene and Safety
    • /
    • v.13 no.1
    • /
    • pp.14-19
    • /
    • 1998
  • The residual tissue concentraion of the widely used aquatic antibacterial agent, oxolinic acid, was surveyed in eels collected from fish markets of Chonbuk Province, Korea. Their concentrations in the dorsolateral muscle were widely varying. In about 32% of samples examined, oxolinic acid was not detected. In about 16% of those samples in which oxolinic acid was detected, the concentration was above 0.1 ppm. The tissue distrubution of the agent in major organs was in the rank order of kidney>liver>plasma>muscle. When the muscle samples which contained residual oxolinic acid were baked for up to 10 min, there was no change in the drug concentration. Their concentration declined to about 50% by baking for 30 min at which time the tissue turned to the texture of charcoal. The extreme stability of oxolinic acid to heating process was confirmed with muscle samples from eels to which a high dose of oxolinic acid was administered, and also with an aqueous oxolinic acid solution of known concentration. It is suggested that an effective regulatory measure should be initiated to keep eel consumers from residual oxolinic acid impact.

  • PDF