• Title/Summary/Keyword: culturable bacteria

Search Result 78, Processing Time 0.028 seconds

Identification and Phylogenetic Analysis of Culturable Bacteria in the Bioareosol from Several Environments (환경 유형에 따른 바이오에어로졸 중 배양성 세균 동정 및 계통분석)

  • Lee, Siwon;Chung, Hyen-Mi;Park, Su Jeong;Choe, Byeol;Kim, Ji Hye;Lee, Bo-Ram;Joo, Youn-Lee;Kwon, Oh Sang;Jheong, Weon Hwa
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.142-149
    • /
    • 2015
  • Bioaerosols are comprised of particles 0.02-100 μm in size that originate in natural and artificial environments, and as a result of human activities. They consist of microorganisms including viruses, bacteria, fungi, and protozoa; fungal spores; microbial toxins; pollen; plant or animal material; expectorated liquid from humans; and glucans (peptidoglycan and β-glucan). Bioaerosols can cause respiratory and other diseases in humans and animals. In this study, bioaerosol samples acquired from agricultural sources, livestock, a sewage treatment plant, a beach, and a pristine area were analyzed to identify and phylogenetically characterize culturable microorganisms. The isolated bacteria exhibited regional differences, with different species dominating. However, Bacillus cereus was isolated in all samples, with a total of 31 strains isolated from all areas, and Acinetobacter baumannii was isolated from an indoor poultry farm. In addition, bacteria determined to be of novel genus or species of the genera Domibacillus, Chryceobacterium, Nocardioides and family Comamonadaceae were isolated from the agricultural, livestock and beach environments.

Study on Antibiotic Resistant Bacteria in Surface Water Receiving Pharmaceutical Complex Effluent (제약공단 방류수 유입 하천에서의 항생제 내성 bacteria에 관한 연구)

  • Kim, Young Jin;Kim, Young Gyu
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.409-418
    • /
    • 2016
  • Objectives: The purpose of this study was to characterize penicillin G resistant bacteria in surface water from pharmaceutical complex effluent. Methods: Surface water was sampled from pharmaceutical complex effluent in Gyeonggi-do Province, Korea in March 2015. Water samples were plated in triplicate on tryptic soy agar plates with 32 mg/L of penicillin G. Penicillin G resistant bacteria were selected from the effluent and subjected to 16S rRNA analysis for the penicillin G resistant species determination. Identified resistant strains were tested for resistance to various antibiotics. Results: Penicillin G resistant bacteria were present at 8.0% in terms of culturable heterotrophic bacteria. Identified penicillin G resistant bacteria exhibited resistance to more than nine of the antibiotics studied. These resistant bacteria are gram negative and are closely related to pathogenic species. Conclusion: Multi-antibiotic resistant bacteria in the surface water of pharmaceutical complex effluent suggest the need for disinfection and advanced oxidation processed for pharmaceutical effluent.

Study on Oxytetracycline Resistant Bacteria in the Surface Water Environment (하천에서의 Oxytetracycline 내성주에 관한 연구)

  • Kim, Young Jin;Kim, Jong Oh
    • Journal of Environmental Health Sciences
    • /
    • v.41 no.1
    • /
    • pp.40-48
    • /
    • 2015
  • Objectives: This study aims to understand the concentration, diversity, and antibiotic characteristics of oxytetracycline resistant bacteria present in a surface water environment. Methods: Water sampling was performed in Cheongmi Stream in Gyeonggi-do, Korea in February and August 2014. Water samples collected from two sites were plated in triplicate on tryptic soy agar plates with 30 mg/L of oxytetracycline. Oxytetracycline resistant bacteria were selected from surface water in Cheongmi Stream and were subjected to 16S rDNA analysis for oxytetracycline resistant species determination. Identified resistant strains were tested for resistance to various antibiotics. Results: Results from this study indicate that the dominant resistant organisms in this aquatic environment are from family Acinetobacter and family Aeromonas. As to culturable heterotrophic bacteria, Oxytetracycline resistant bacteria were present 0.45-0.93% during winter and 0.08-0.38% during summer. Most oxytetracycline resistant bacteria exhibited resistance to more than ten of the antibiotics studied. The diversity of oxytetracycline resistant bacteria in winter was higher than in summer. Conclusion: Most of these resistant bacteria are Gram negative and are closely related to pathogenic species. These results suggest that increasing multi-antibiotic resistant bacteria in the surface water environment has a close relation to the reckless use of antibiotics in livestock.

Airborne Bacteria Concentration and Species Identification in Residential Living Spaces (주택내 주거공간에 따른 부유세균 농도 분포 및 종 동정 연구)

  • Kim, Sung-Yeon;Jheong, Weonhwa;Hwang, Eun-Seol;Kim, Ji-Hye;Jung, Joon-Sig;Lee, Jae-won;Chung, Hyen-Mi;Kwon, Myunghee
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.6
    • /
    • pp.438-449
    • /
    • 2016
  • Objectives: Exposure to airborne bacteria is associated with adverse health effects such as respiratory and infectious diseases. This study evaluated airborne bacterial concentrations in the living rooms, kitchens, and toilets of 30 homes. Methods: Bacteria were sampled with an MAS100 impactor in three spaces in the subject homes between April 2014 and February 2015. Bacteria were grown on TSA plates for 48 hours at $35^{\circ}C$. The bacterial strains were isolated and amplified by polymerase chain reaction. Results: The most culturable bacteria were found in toilets ($624.0CFU/m^3$, GM: $417.3CFU/m^3$), followed by in the kitchen ($503.8CFU/m^3$, GM: $324.9CFU/m^3$). The dominant genera identified were: Staphylococcus sp.(19%), Micrococcus sp.(16%), and Bacillus sp.(11%) in the indoor air and Bacillus sp. (30%) in the outdoor air. Gram-positive bacteria comprised more than half of all colonies. Conclusion: In this study, culturable bacteria concentrations were higher than those reported in other spaces. Therefore, it is important to control relative humidity and remove moisture to prevent bacteria from multiplying. Additionally, the dominant species in indoor air were Staphylococcus sp. and Micrococcus sp. These are found on the human skin, mucous membranes, and hair, so human activity can affect bacterial distribution. Therefore, cleaning and controlling moisture are important for reducing indoor bacterial concentrations.

Study on Antibiotic Resistant Enterobacteria in Pharmaceutical Effluent (제약회사 폐수처리장 방류수 중 항생제 내성 Enterobacteria에 관한 연구)

  • Kim, Jae-Gun;Kim, Young Jin
    • Journal of Environmental Health Sciences
    • /
    • v.42 no.1
    • /
    • pp.34-40
    • /
    • 2016
  • Objectives: This study aims to examine the concentration, diversity, and antibiotic characteristics of penicillin G resistant enterobacteria present in pharmaceutical effluent. Methods: Water sampling was performed from a pharmaceutical company in Gyeonggi-do Province, Korea in March 2015. Water samples were plated in triplicate on tryptic soy agar plates with 32 mg/L of penicillin G. Penicillin G resistant enterobacteria were selected from the effluent and were subjected to 16S rRNA analysis for penicillin G resistant species determination. Identified resistant strains were tested for resistance to various antibiotics. Results: Penicillin G resistant enterobacteria were present at 6.2% as to culturable heterotrophic bacteria. Identified penicillin G resistant enterobacteria exhibited resistance to more than 10 of the antibiotics studied. These resistant bacteria are gram negative and are closely related to pathogenic species. Conclusion: Multi-antibiotic resistant bacteria in the effluent suggest a need for disinfection and advanced oxidation processes for pharmaceutical effluents.

Contamination of Green Vegetable Juice by E. coli O157:H7 during Storage (E. coli O157:H7에 의한 녹즙 저장 환경에서의 미생물학적 오염도 조사)

  • Lim, Eun Seob;Koo, Ok Kyung
    • Korean Journal of Food Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.446-451
    • /
    • 2015
  • The market for green vegetable juice (GVJ) is growing owing to the increasing demand for healthy food; however data on the safety and quality of GVJ are poorly reported. The objective of this study was to investigate the change in microbial community in GVJ during storage and its contamination by E. coli O157:H7. The microbial community was analyzed via culturable and non-culturable methods at 5, 10, and $25^{\circ}C$ for different storage times. In the non-culturable method, denaturing gradient gel electrophoresis (DGGE) was used. The initial bacterial concentration was $2.92{\times}10^5CFU/mL$, which exceeded the limit prescribed by the Korean Food Hygiene law. The results of the DGGE analysis indicated that the microbial community during storage was diverse and the spoilage lactic acid bacteria were prevalent at a later stage. Other bacteria such as Rahnella, Citrobacter, Pseudomonas, and Cyanobacteria were identified. Thus, the results strongly emphasize the need to pay attention to GVJ production safety, especially with respect to temperature control, in order to prevent the growth of foodborne pathogens such as E. coli O157:H7 and other spoilage bacteria.

Phylogenetic diversity of bacterial communities in a gray solar saltern and isolation of extremely halophilic bacteria using culturomics (토판염전 결정지 내 세균군집의 계통학적 다양성 및 Culturomics법을 이용한 고도 호염균의 분리)

  • Cho, Geon-Yeong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.53 no.1
    • /
    • pp.29-38
    • /
    • 2017
  • In this study, we investigated the phylogenetic diversity of the bacterial community and isolation of extremely halophilic bacteria using culturomics in a gray solar saltern. The number of bacterial living cells, enumerated in a gray solar saltern by direct fluorescence microscopy was three to four orders of magnitude greater than those enumerated by plate counts, suggesting the distribution of 'viable but non-culturable bacteria'. The biodiversity of bacterial communities in a gray solar saltern was investigated by pyrosequencing, 1,778 OTUs of bacteria were comprised of 18 phyla 46 classes 85 orders 140 families 243 genera with 6.16 diversity index. Archaea communities were composed of 3 phyla 6 classes 7 orders 7 families 38 genera with 4.95 diversity index from 643 OTUs. Totally 137 isolates were isolated by 59 different cultural methods based on culturomics considering culture media and conditions suitable for the growth of extremely halophilic bacteria. Phylogenetic analyses of extremely halophilic isolates based on 16S rRNA gene sequences, extremely halophilic isolates were composed of 4 phyla and 11 genera. Haloterrigena and Haloferax can be successfully isolated from culturomics. These culturomics were effective methods for collection of diversity of extremely halophilic bacteria.

Analysis of Community Level Physiological Profiles in the Rhizosphere of Brassica rapa subsp. pekinensis (Brassica rapa subsp. pekinensis 근권 서식 미생물의 기질이용 활성 조사)

  • Jung, Se-Ra;Kim, Seung-Bum
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.1
    • /
    • pp.42-46
    • /
    • 2008
  • The community size of culturable heterotrophic bacteria and community level physiological profiles (CLPP) in the rhizosphere of Brassica rapa subsp. pekinensis (Chinese cabbage) were analyzed in two different sites. The average community size of culturable heterotrophic bacteria ranged between $2.65\times10^6CFU\;g^{-1}$ soil (Suwon) and $3.75\times10^6CFU\;g^{-1}$ soil (Yesan), whereas those of bulk soils ranged between $2.45\times10^6CFU\;g^{-1}$ soil (Suwon) and $2.97\times10^6CFU\;g^{-1}$ soil (Yesan). The average functional richness of Suwon rhizoshpere was 90.8, whereas that of Yesan rhizosphere was 154.1. High level of correlation was found between the community size and functional richness. The most actively utilized substrates in both rhizospheres were adonitol, L-asparagine, D-gluconic acid, L-glutamic acid and D-galacturonic acid. Clear differences were seen in the utilization patterns between the two sites. Differences were also observed for the patterns of bulk soils between the two sites, although D-raffinose and D-mannose were found as the commonly utilized substrates.

ENHANCED BIOREMEDIATION AND MODIFIED BACTERIAL COMMUNITY STRUCTURE BY BARNYARD GRASS IN DIESEL-CONTAMINATED SOIL

  • Kim, Jai-Soo;Min, Kyung-Ah;Cho, Kyung-Suk;Lee, In-Sook
    • Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.37-45
    • /
    • 2007
  • Phytoremediation has been used effectively for the biodegradation of oil-based contaminants, including diesel, by the stimulation of soil microbes near plant roots (rhizosphere). However, the technique has rarely been assessed for itsinfluence on soil microbial properties such as population, community structure, and diversity. In this study, the removal efficiency and characteristics of rhizobacteria for phytoremediation of diesel-contaminated soils were assessed using barnyard grass (Echinochloa crusgalli). The concentration of spiked diesel for treatments was around $6000\;mg\;kg^{-1}$. Diesel removal efficiencies reached 100% in rhizosphere soils, 76% in planted bulk soils, and 62% in unplanted bulk soils after 3weeks stabilization and 2 months growth(control, no microbial activity: 32%). The highest populations of culturable soil bacteria ($5.89{\times}10^8$ per g soil) and culturable hydrocarbon-degraders($5.65{\times}10^6$ per g soil) were found in diesel-contaminated rhizosphere soil, also yielding the highest microbial dehydrogenase. This suggests that the populations of soil bacteria, including hydrocarbon-degraders, were significantly increased by a synergistic rhizosphere + diesel effect. The diesel treatment alone resulted in negative population growth. In addition, we investigated the bacterial community structures of each soil sample based on DGGE (Denaturing Gel Gradient Electrophoresis) band patterns. Bacterial community structure was most influenced by the presence of diesel contamination (76.92% dissimilarity to the control) and by a diesel + rhizosphere treatment (65.62% dissimilarity), and least influenced by the rhizosphere treatment alone (48.15% dissimilarity). Based on the number of distinct DGGE bands, the bacterial diversity decreased with diesel treatment, but kept constant in the rhizosphere treatment. The rhizosphere thus positively influenced bacterial population density in diesel-contaminated soil, resulting in high removal efficiency of diesel.

Culturable Endophytes Associated with Soybean Seeds and Their Potential for Suppressing Seed-Borne Pathogens

  • Kim, Jiwon;Roy, Mehwish;Ahn, Sung-Ho;Shanmugam, Gnanendra;Yang, Ji Sun;Jung, Ho Won;Jeon, Junhyun
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.313-322
    • /
    • 2022
  • Seed-borne pathogens in crops reduce the seed germination rate and hamper seedling growth, leading to significant yield loss. Due to the growing concerns about environmental damage and the development of resistance to agrochemicals among pathogen populations, there is a strong demand for eco-friendly alternatives to synthetic chemicals in agriculture. It has been well established during the last few decades that plant seeds harbor diverse microbes, some of which are vertically transmitted and important for plant health and productivity. In this study, we isolated culturable endophytic bacteria and fungi from soybean seeds and evaluated their antagonistic activities against common bacterial and fungal seed-borne pathogens of soybean. A total of 87 bacterial isolates and 66 fungal isolates were obtained. Sequencing of 16S rDNA and internal transcribed spacer amplicon showed that these isolates correspond to 30 and 15 different species of bacteria and fungi, respectively. Our antibacterial and antifungal activity assay showed that four fungal species and nine bacterial species have the potential to suppress the growth of at least one seed-borne pathogen tested in the study. Among them, Pseudomonas koreensis appears to have strong antagonistic activities across all the pathogens. Our collection of soybean seed endophytes would be a valuable resource not only for studying biology and ecology of seed endophytes but also for practical deployment of seed endophytes toward crop protection.