• 제목/요약/키워드: cultivation optimization

검색결과 163건 처리시간 0.024초

Optimization of Medium Composition and Cultivation Parameters for Fructosyltransferase Production by Penicillium aurantiogriseum AUMC 5605

  • Farid, Mohamed Abdel-Fattah Mohamed;Kamel, Zinat;Elsayed, Elsayed Ahmed;El-Deen, Azza Mohamed Noor
    • Journal of Applied Biological Chemistry
    • /
    • 제58권3호
    • /
    • pp.209-218
    • /
    • 2015
  • Fructooligosaccharides have been mainly produced by microbial fructosyltransferases (FTase) enzymes. The present work focuses on the optimization of medium composition and cultivation parameters affecting FTase produced by Penicillium aurantiogriseum AUMC 5605 in shake flask cultivation. FTase production was optimized in two steps using DeMeo's fractional factorial design. A 1.46-fold increase in FTase production (105.4 U/mL) was achieved using the optimized culture medium consisting of (g/L): sucrose, 600; yeast extract, 10; $K_2HPO_4$, 5; $MgSO_4{\cdot}7H_2O$, 0.5; $(NH_4)_2SO_4$, 1.0 and KCl, 0.5. The obtained results showed that the maximum FTase enzyme activity was produced at initial cultivation pH values ranging from 6.0-6.5, at agitation speed of 200 rpm and using vegetative fungal cells as inoculum. Moreover, results showed that optimization of medium composition and some cultivation parameters resulted in an increase of about 93.7% in the enzyme activity than the nonoptimized cultivation conditions after 96 h of cultivation. Additionally, maximum production and specific production rates recorded 2340 U/L/h and 102 U/L/h/g cells, respectively.

혼합영양 조건하에서 Haematococcus sp.의 배지 최적화 및 대사산물 생산 (Medium Optimization for Cell Growth and Metabolite Formation from Haematococcus sp. under Mixotrophic Cultivation)

  • 김효선;김성구;정귀택
    • 한국미생물·생명공학회지
    • /
    • 제48권3호
    • /
    • pp.337-343
    • /
    • 2020
  • Haematococcus sp.를 대상으로 mixotroph 형태에서 배양을 위한 배지 최적화 연구를 수행하였다. 기본 배지로는 modified MS 배지가 적절했으며, 탄소원으로는 glucose가, 그리고 농도는 10 g/l가 적합하였다. 질소원으로는 KNO3를 선정하였으며, 농도는 1.9 g/l이 최적이었다. 최적의 배지조건에서 Haematococcus sp.를 초기 접종량(0.18 g/l)로 접종하여 14일 후에 5.58 ± 0.25 g/l로 성장하였으며, 이는 건조 세포중량 기준으로 약 31배의 성장한 것이다. 이때 생성된 클로로필은 172.16 ± 7.79 mg/l였으며, 카로티노이드는 42.33 ± 1.91 mg/l이었다. 본 연구의 결과는 추후 미세조류 대량 배양과 대사산물의 생산에 이용가능한 기초자료가 될 수 있을 것이라 판단된다.

Cavitation optimization of single-orifice plate using CFD method and neighborhood cultivation genetic algorithm

  • Zhang, Yu;Lai, Jiang;He, Chao;Yang, Shihao
    • Nuclear Engineering and Technology
    • /
    • 제54권5호
    • /
    • pp.1835-1844
    • /
    • 2022
  • Single-orifice plate is wildly utilized in the piping system of the nuclear power plant to throttle and depressurize the fluid of the pipeline. The cavitation induced by the single-orifice plate may cause some serious vibration of the pipeline. This study aims to find the optimal designs of the single-orifice plates that may have weak cavitation possibilities. For this purpose, a new single-orifice plate with a convergent-flat-divergent hole was modeled, a multi-objective optimization method was proposed to optimize the shape of a single-orifice plate, while computational fluid dynamics method was adopted to obtain the fluid physical quantities. The reciprocal cavitation number and the developmental integral were treated as cavitation indexes (e.g., objectives for the optimization algorithm). Two non-dominant designs ultimately achieved illustrated obvious reduction in the cavitation indexes at a Reynolds number Re = 1 ×105 defined based on fluid velocity. Besides, the sensitivity analysis and temperature effects were also performed. The results indicated that the convergent angle of the single-orifice plate dominants the cavitation behavior globally. The optimal designs of single-orifice plates result in lower downstream jet areas and lower upstream pressure. For a constant Reynolds number, the higher temperature of liquid water, the easier it is to undergo cavitation. Whereas there is a diametric phenomenon for a constant fluid velocity. Moreover, the regression models were carried out to establish the mathematical relation between temperature and cavitation indexes.

Enhanced (R)-2-(4-Hydroxyphenoxy)Propionic Acid Production by Beauveria bassiana: Optimization of Culture Medium and H2O2 Supplement under Static Cultivation

  • Hu, Hai-Feng;Zhou, Hai-Yan;Wang, Xian-Lin;Wang, Yuan-Shan;Xue, Ya-Ping;Zheng, Yu-Guo
    • Journal of Microbiology and Biotechnology
    • /
    • 제30권8호
    • /
    • pp.1252-1260
    • /
    • 2020
  • (R)-2-(4-hydroxyphenoxy)propionic acid (HPOPA) is a key intermediate for the preparation of aryloxyphenoxypropionic acid herbicides (R-isomer). In order to improve the HPOPA production from the substrate (R)-2-phenoxypropionic acid (POPA) with Beauveria bassiana CCN-A7, static cultivation and H2O2 addition were attempted and found to be conducive to the task at hand. This is the first report on HPOPA production under static cultivation and reactive oxygen species (ROS) induction. On this premise, the cultivation conditions and fermentation medium compositions were optimized. As a result, the optimal carbon source, organic nitrogen source, and inorganic nitrogen source were determined to be glucose, peptone, and ammonium sulfate, respectively. The optimal inoculum size and fermentation temperature were 13.3% and 28℃, respectively. The significant factors including glucose, peptone, and H2O2, identified based on Plackett-Burman design, were further optimized through Central Composite Design (CCD). The optimal concentrations were as follows: glucose 38.81 g/l, peptone 7.28 g/l, and H2O2 1.08 g/l/100 ml. Under the optimized conditions, HPOPA titer was improved from 9.60 g/l to 19.53 g/l, representing an increase of 2.03-fold. The results obtained in this work will provide novel strategies for improving the biosynthesis of hydroxy aromatics.

Bacillus subtilis DC-2의 색소 생성 및 그 생성물에 대한 항산화성의 최적화 (Optimization for Pigment Production and Antioxidative Activity of the Products by Bacillus subtilis DC-2)

  • 정영건;최웅규;지원대;정현채;최동환
    • 한국식품영양과학회지
    • /
    • 제26권6호
    • /
    • pp.1039-1043
    • /
    • 1997
  • Correlation among color intensity, electron donating ability to $\alpha$, $\alpha$-diphenyl-$\beta$-dicrylhydrazy(DPPH) and cultivation conditions by Bacillus subtilis DC-2 were tested with response surface methodology. Both of pigment generation ability and DPPH were more affected by temperature than any other factor. The highest correlation was appeared between color intensity and DPPH as 0.8364 which is significant at 1% level. After fixing cultivation time which is not significant at 10% level to 84hrs as optical cultivation time, response surface methodology was conducted in regarding temperature and color intensity. As a result of overlapped contour map of color intensity and DPPH, when cultivation temperature was in the range of 38.9~41.1$^{\circ}C$ and pH was in the range of 8.34~9.12, optical density of color intensity was predicted higher than 0.374 at 390nm and DPPH was infered higher than 1.310 at 528nm. In the range of optical culture condition, cultivation temperature, pH and cultivation time was fixed to 4$0^{\circ}C$, 8.5 and 85hrs, respectively. In resulting, observation value of color intensity and DPPH was in the range of anticipation value as 0.386 at 390nm and 1.332 at 528nm respectively.

  • PDF

새송이 버섯 재배사의 공간효율 및 구조안전 검토 (Space Efficiency and Structural Safety of Eryngii Cultivation House)

  • 권진근;서원명;윤용철
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.351-354
    • /
    • 2003
  • This study was carried out to set up design criteria of Eryngii cultivation houses. Optimization of lay-out efficiency together with analysis of structural safety were two main tools of approaching toward reasonable models to be developed. Some models tentatively assumed according to the result of field survey and analysis were compared in the aspect of structural safety as well as energy efficiency.

  • PDF

Chlorella saccharophila 배양 최적화 및 유용물질의 생산 (Optimization of Chlorella saccharophila Cultivation and Useful Materials Production)

  • 김아람;박미라;김효선;김성구;정귀택
    • Korean Chemical Engineering Research
    • /
    • 제55권1호
    • /
    • pp.74-79
    • /
    • 2017
  • 본 연구에서는 Chlorella saccharophila의 배양을 통하여 바이오에너지 자원을 대량으로 확보하고자 배지 최적화 실험을 진행하였다. 최적화 인자로는 배양 형태, 초기 접종량, 탄소원 종류 및 농도, 질소원 종류 및 농도, 배양시간이다. 실험 결과, 배양 형태는 광원과 외부탄소원을 모두 공급하는 mixotrophic 배양이 적절하였다. 초기 접종량은 3% (v/v), 탄소원은 glucose 30 g/L, 질소원은 $NaNO_3$ 0.95 g/L를 첨가하는 것이 우수하였다. 최적 배지 조건으로 배양한 결과, oil의 함량은 12일에서 가장 높았으나, 회수되는 C. saccharophila의 biomass양과 chlorophyll의 양은 10일에서 가장 높았다. 위의 결과는 미세조류의 배지 최적화를 통하여 대량배양을 위한 기초자료로 사용될 수 있으리라 판단된다.

Implementation of A Thin Film Hydroponic Cultivation System Using HMI

  • Gyu-Seok Lee;Tae-Sung Kim;Myeong-Chul Park
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권4호
    • /
    • pp.55-62
    • /
    • 2024
  • 본 논문에서는 HMI 디스플레이를 활용하고 IoT 기술을 이용한 박막식 수경 재배 방식의 식물재배기를 제안한다. 기존의 식물재배기는 토양 기반의 재배로 관리가 어렵고, 개방된 재배 환경으로 인해 환경조건 최적화가 어려웠다. 또한 즉각적인 제어가 어려워 식물재배의 성장이 지연되어 식물재배에 대한 문제점이 있다. 이러한 문제를 해결하기 위해, MCU와 센서를 연결하여 재배 환경을 구축하고, HMI 디스플레이와 연동하여 환경정보를 확인하고 빠르게 제어할 수 있게 구현하였다. 또한, 환경정보의 변화를 최소화하기 위해 케이스를 적용하였다. 박막식 수경 재배시스템 구현으로 토양에 관한 관리를 편하게 하였고 동작과 제어를 통해 기능성을 높였으며, 디스플레이를 통해 환경정보를 쉽게 파악할 수 있다. 기존 재배기와 수경재배기에서의 작물 재배 실험으로 성장이 빠른 효과성을 확인하였다. 향후 연구 방향으로는 재배 환경정보 전송 및 저장, 비전 카메라를 활용한 성장 정보를 연동하고 비교하여 생육 정보를 최적화할 것이다. 이를 통해 효율적이고 안정적인 식물재배할 수 있을 것으로 기대한다.

Optimization of Cultivation and Extraction Conditions of Pupae-Cordyceps for Cordycepin Production

  • Turk, Ayman;Kim, Beom Seok;Ko, Sung Min;Yeon, Sang Won;Ryu, Se Hwan;Kim, Young-Guk;Hwang, Bang Yeon;Lee, Mi Kyeong
    • Natural Product Sciences
    • /
    • 제27권3호
    • /
    • pp.187-192
    • /
    • 2021
  • Cordycepin is a characteristic bioactive compound of Cordyceps militaris with various beneficial effects. Cordyceps grows on both grains and insects, and the content of cordycepin varies depending on the cultivation conditions. In this study, the effect of culture conditions on the cordycepin content was analyzed and the extraction conditions were optimized. Analysis of cordycepin content in Pupae-Cordyceps found that it was highly affected by temperature in culture conditions. In the case of mycelium, it grows well at 20 and 25 ℃, but not at 30 ℃. However, the content of cordycepin was highest at 30℃ and less at 20 ℃. The fruiting body also showed a similar tendency: growth was 20 ℃ > 25 ℃ > 30 ℃, but the cordycepin content was 30 ℃ > 25 ℃ > 20 ℃. The content of cordycepin decreased after the fruiting bodies were produced. Next, extraction conditions such as solvent and time were optimized for maximum cordycepin content using response surface methodology (RSM). There was a large difference in the content of cordycepin according to the content of ethanol and the extraction temperature. Through RSM, it was confirmed that the optimum condition for extraction of cordycepin was 48.9 ℃ using 49.0% ethanol, and 160.9 mg/g extract could be obtained under this condition. In conclusion, this study suggested the optimized conditions for the cultivation and extraction of Pupae-Cordyceps for maximizing the content of cordycepin, and this may be applied to the discovery of materials using cordycepin.

음식물쓰레기를 이용한 젖산 생산의 최적화 (Optimization of Lactic Acid Production from Kitchen Refuses)

  • 이백석;윤현희;김은기
    • KSBB Journal
    • /
    • 제16권2호
    • /
    • pp.207-211
    • /
    • 2001
  • Statistical experimental design methods were employed to select the cultivation factors influencing latic acid production during the fermentation of kitchen refuses. Working volume and pH swings were identified as the main factors affecting lactic acid production. Optimum pH swing was pH 7.8 and working volume was 125 mL in a 250 mL flask. Under optimum condition, lactic acid was produced at 21.8 g/L, which was 6.2 times higher than produced during uncontrolled fermentation.

  • PDF