• 제목/요약/키워드: cultivation environments

Search Result 137, Processing Time 0.117 seconds

Interpretation of Genotype × Environment Interaction of Sesame Yield Using GGE Biplot Analysis

  • Shim, Kang-Bo;Shin, Seong-Hyu;Shon, Ji-Young;Kang, Shin-Gu;Yang, Woon-Ho;Heu, Sung-Gi
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.3
    • /
    • pp.349-354
    • /
    • 2015
  • The AMMI (additive main effects and multiplicative interaction) and GGE (genotype main effect and genotype by environment interaction) biplot which were accounted for a substantial part of total sum of square in the analysis of variance suggested to be more appropriate models for explaining G $\times$ E interaction. The grain yield of total ten sesame genotypes was significantly affected by environment which explained 61% of total variation, whereas genotype and genotype x environment interaction (G $\times$ E) were explained 16%, 24% respectively. From the results of experiment, three genotypes Miryang49, Koppoom and Ansan were unstable, whereas other three genotypes Kyeongbuk18, Miryang50 and Kanghuk which were shorter projections to AEA ordinate were relatively stable over the environments. Yangbak which was closeness to the mean yield and short projection of the genotype marker lines was regarded as genotype indicating good performance with stability. Ansan, Miryang48 and Yangbaek showed the best performance in the environments of Naju, Suwon, Iksan and Andong. Similarly, genotype Miyrang47 exhibited the best performance in the environments of Chuncheon and Miryang. Andong is the closest to the ideal environment, and therefore, is the most desirable among eight environments.

The Adaptation of Ginseng Production of Semi-arid Environments The Example of British Columbia, Canada

  • Bailey, W.G.
    • Proceedings of the Ginseng society Conference
    • /
    • 1990.06a
    • /
    • pp.155-167
    • /
    • 1990
  • Ginseng Is renowned for both its medicinal and herbal uses and successful cultivation of Panax ginseng in Asia and Panax quinquefolium in North America has until recently taken place in the native geographical ranges of the plants. As a consequence of the potential high capital return and anticipated increases in consumer consumption, commercial cultivation of American ginseng now occurs well outside the native range of the plant in North America. In fact, the region of greatest expansion of cultivation is in the semi-arid interior region of British Columbia, Canada. Linked with this expansion is the potential domination of the ginseng industry by agricultural corporations. In the interior of British Columbia, the native deciduous forest environment of eastern North America is simulated with elevated polypropylene shade and a surface covering of straw mulch. The architecture of these environments is designed to permit maximum machinery usage and to minimize labor requirements. Further, with only a four- years growth cycle, plant densities in the gardens are high. In this hot, semi-arid environment, producers believe they have a competitive advantage over other regions in North America because of the low precipitation rates. This helps to minimize atmospheric humidity such that the conditions for fungal disease development are reduced. If soil moisture level become limited, supplemental water can be provided by irrigation. The nature of the radiation and energy balance regimes of the shade and many environments promotes high soil moisture levels. Also, the modified environment redlines soil heating. This can result in an aerial environment for the plant that is stressful and a rooting zone environment that is suloptimal. The challenge of further refining the man modified environment for enhanced plant growth and health still remains. Keywords Panax ginseng, Panax quinquefolium, cultivation, ginseng production.

  • PDF

Impact of Different Environmental Conditions and Cultivation Techniques on Productivity of Forage Corn in Central and Southern Area of Korea (중부 및 남부지역에서 재배환경과 재배기술의 차이가 사료용 옥수수의 생산성에 미치는 영향)

  • Choi, Gi Jun;Lee, Ki Won;Choi, Ki Choon;Hwang, Tae Young;Kim, Ji Hye;Kim, Won Ho;Lee, Eun Ja;Sung, Kyung Il;Jung, Jeong Sung
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.39 no.4
    • /
    • pp.195-206
    • /
    • 2019
  • This experiment was carried out to study the effects of different environmental conditions and cultivation techniques on productivity of forage corn in central and southern area of Korea on 2017 and 2018. Average dry matter yield of forage corn at 34 cultivation regions was 13,510kg/ha. Forage productivity of forage corn cultivated at actual production sites have positive correlation with cultivation techniques(p<0.01) but not correlated with cultivation environments. Forage productivity of forage corn have positive correlation with seeding techniques(p<0.01) but not correlated with fertilization techniques. These results suggest that practices of cultivation techniques are more important than cultivation environments for increasing the forage productivity of forage corn. Therefore, yield prediction techniques of forage corn in Korea have to be considered the practices of cultivation techniques along with soil and climate conditions.

Identification of Toxin Gene and Antibiotic Resistance of Staphylococcus Aureus Isolated from Agricultural Product Cultivation Environments (농산물 생산 환경에서 분리된 Staphylococcus aureus의 항생제 내성 및 독소 유전자 확인)

  • Park, Su-Hee;Kim, Jeong-Sook;Kim, Kyeong-Yeol;Chung, Duck-Hwa;Shim, Won-Bo
    • Journal of Environmental Health Sciences
    • /
    • v.39 no.5
    • /
    • pp.465-473
    • /
    • 2013
  • Objectives: This study was undertaken to analyze Staphylococcus aureus from cultivation environments for agricultural products and to confirm antibiotic resistance and enterotoxin genes for the isolated S. aureus. Methods: A total of 648 samples were collected from apple, peach, ginseng and balloon flower farms. S. aureus was isolated from soil, agricultural water, personal hygiene elements (hands, gloves and clothes) and work utensils (boxes). Results: S. aureus was detected in a total of 25 samples and 72 strains were isolated. The resistance rate of the isolated S. aureus strains was confirmed at 33.3%, with 24 resistant strains among the total of 72. Fourteen different patterns types were found, and three pattern types (NV, OX, VA) were confirmed most frequently. As result of the detection of enterotoxin gene type, four gene types (sea: 1, sed: 4, seg: all isolated S. aureus, sei: all isolated S. aureus) were analyzed among a total of nine types. Conclusions: This study demonstrates that personal hygiene techniques should be properly managed, such as washing and sterilization before or after work, because agricultural contamination by S. aureus frequently developed through improper management.

Impact of Different Environmental Conditions and Production Techniques on Forage Productivity of Italian Ryegrass in Central and Southern Regions of Korea (중부 및 남부지역에서 재배환경과 재배기술의 차이가 이탈리안 라이그라스의 생산성에 미치는 영향)

  • Choi, Gi Jun;Choi, Ki Choon;Hwang, Tae Young;Jung, Jeong Sung;Kim, Ji Hye;Kim, Won Ho;Lee, Eun Ja;Sung, Kyung Il;Lee, Ki Won
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.38 no.4
    • /
    • pp.231-242
    • /
    • 2018
  • This experiment was carried out to study the effects of different environmental conditions and production techniques on forage productivity of Italian ryegrass (IRG) in central and southern regions of Korea from 2016 to 2017. Average dry matter yield of 27 IRG cultivation regions was 6,940kg/ha. Forage productivity of IRG have positive correlation with cultivation techniques(p<0.01) but not correlated with cultivation environments. Forage productivity of IRG have positive correlation with seeding and field management techniques(p<0.01) but not correlated with fertilization techniques. This results suggests that practices of cultivation techniques are more important than cultivation environments for increasing the forage productivity of IRG. Therefore, yield prediction techniques of IRG in Korea have to be considered the practices of cultivation techniques along with soil and climate conditions.

The Adaptation of Ginseng Production of Semi-arid Environments : The Example of British Columbia, Canada (강우량이 극히 적은 여건에서의 인삼재배의 순응 : 캐나다 브리티쉬 콜롬비아의 실례)

  • Bailey, W.G.
    • Journal of Ginseng Research
    • /
    • v.14 no.2
    • /
    • pp.297-309
    • /
    • 1990
  • Ginseng is renowned for both its medicinal and herbal uses and successful cultivation of Panax ginseng in Asia and Panax Vtiinvtiefolilim in North America has until recently taken place in the native geographical ranges of the plants. As a consequence of the potential high capital return and anticipated increases in consumer consumption, commercial cultivation of American ginseng now occurs well outside the native range of the plant in North America. In fact, the region of greatest expansion of cultivation is in the semi-arid interior region of British Columbia, Canada. Linked with this expansion is the potential domination of the ginseng industry by agricultural corporations. In the interior of British Columbia, the native decidous forest environment of eastern North America is simulated with elevated polypropylene shade and a sllrface covering of straw mulch. The architecture of these environments is designed to permit maximillm machinery useage and to minimize labour requirements. Further, with only a four-year growth cycle, plant densities in the gardens are high. In this hot, semiarid environment, producers believe they have a competitive advantage over other regions in North America because of the low precipitation rates. This helps to minimize atmospheric humidity such that the conditions for fungal disease development are reduced. If soil moisture levels become limited, supplemental water can be provided by irrigation. The nature of the radiation and energy balance regimes of the shade and much environment promotes high soil moistilre levels. Also, the modified environment reduces soil heating. This can result in an aerial environment for the plant that is stressful and a rooting zone environment that is sub-optimal. The challenge of further refining the man modified environment for enhanced plant growth and health still remains.

  • PDF

Tele-operating System of Field Robot for Cultivation Management - Vision based Tele-operating System of Robotic Smart Farming for Fruit Harvesting and Cultivation Management

  • Ryuh, Youngsun;Noh, Kwang Mo;Park, Joon Gul
    • Journal of Biosystems Engineering
    • /
    • v.39 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • Purposes: This study was to validate the Robotic Smart Work System that can provides better working conditions and high productivity in unstructured environments like bio-industry, based on a tele-operation system for fruit harvesting with low cost 3-D positioning system on the laboratory level. Methods: For the Robotic Smart Work System for fruit harvesting and cultivation management in agriculture, a vision based tele-operating system and 3-D position information are key elements. This study proposed Robotic Smart Farming, an agricultural version of Robotic Smart Work System, and validated a 3-D position information system with a low cost omni camera and a laser marker system in the lab environment in order to get a vision based tele-operating system and 3-D position information. Results: The tasks like harvesting of the fixed target and cultivation management were accomplished even if there was a short time delay (30 ms ~ 100 ms). Although automatic conveyor works requiring accurate timing and positioning yield high productivity, the tele-operation with user's intuition will be more efficient in unstructured environments which require target selection and judgment. Conclusions: This system increased work efficiency and stability by considering ancillary intelligence as well as user's experience and knowhow. In addition, senior and female workers will operate the system easily because it can reduce labor and minimized user fatigue.

복합환경 시스템 구동을 위한 센서응용 분석

  • Kim, Jong-Man;Kim, Won-Seop
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.283-283
    • /
    • 2009
  • Composition environments - Automatic Control System based on Sproute Cultivator using Remote Conditional Driving System was realized. It was carried out to investigate into the characteristics of LEDs Control for the cultivation of sprouts. We have also composed a Combined Automatic Control System possible for the control of temperature and humidity at the same time. The applied LEDs for measurement are blue, green, red, white, yellow leds. And we had also designed the Web Programming for the automatic control about sprout cutivators.

  • PDF

Filter Plate Micro Trap as a Device for in situ Cultivation for Environmental Microorganisms (환경시료에 존재하는 미생물 배양을 위한 filter plate micro trap의 개발)

  • Jung, Da-Woon;Ahn, Tae-Seok
    • Journal of Life Science
    • /
    • v.22 no.6
    • /
    • pp.723-729
    • /
    • 2012
  • Filter plate microbial trap (FPMT) was invented as an in situ cultivation device for the isolation of bacteria from natural environments. FPMT consists of a medium and membrane filters (0.45 ${\mu}m$ pore size) and microorganisms and compounds can be moved freely moved into the medium. This device was applied to two soil samples of Greenland. The microbial diversity of both soil samples by FPMT was higher than that by the conventional Petri dish-based method. Moreover, novel bacterial species were isolated by FPMT. The new FPMT is effective for in situ cultivation of natural samples and could be applicable to the isolation of uncultivable microorganism.