• Title/Summary/Keyword: cucumber plants

Search Result 393, Processing Time 0.027 seconds

Ultrastructures of the Loaves of Cucumber Plane Treated with DL-3-Aminobutyric Acid at the Vascular Bundle and the Penetration Sites after Inoculation with Colletotrichum orbiculare

  • Jeun, Y.C.;Park, E.W.
    • The Plant Pathology Journal
    • /
    • v.19 no.2
    • /
    • pp.85-91
    • /
    • 2003
  • Pre-treatment with DL-3-aminobutyric acid (BABA) in the cucumber plants caused the decrease of disease severity after inoculation with anthracnose pathogen Colletotrichum orbiculare. In this study, ultrastructures of the vascular bundle and the infection structures in the leaves of BABA-treated as well as untreated cucumber plants were observed after inoculation with the anthracnose pathogen by electron microscopy. The ultrastructures of vascular bundle in the leaves of BABA-treated plants were similar to those of the untreated plants except plasmodesmata. In the BABA-treated plants, the plasmodesmata were more numerous than in the untreated plants, suggesting that the BABA treatment may cause the active transfer of metabolites through the vascular bundle. In the leaves of untreated plants, the fungal hyphae were spread widely in the plant tissues at 5 days after pathogen inoculation. Most cellular organelles in the hyphae were intact, indicating a compatible interaction between the plant and the parasite. In contrast, in the leaves of BABA pre-treated plants the growth of most hyphae was restricted to the epidermal cell layer at 5 days after inoculation. Most hyphae cytoplasm and nucleoplasm was electron dense or the intracellular organelles were degenerated. The cell walls of some plant cells became thick at the site adjacent to the intercellular hyphae, indicating a mechanical defense reaction of the plant cells against the fungal attack. Furthermore, hypersensitive reaction (HR) of the epidermal cells was often observed, in which the intracellular hyphae were degenerated. Based on these results it is suggested that BABA causes the enhancement of defense mechanisms in the cucumber plants such as cell wall apposition or HR against the invasion of C. orbiculare.

Production of transgenic cucumber expressing phytoene synthase-2A carotene desaturase gene

  • Jang, Hyun A;Utomo, Setyo Dwi;Kwon, Suk Yoon;Ha, Sun-Hwa;Xing-guo, Ye;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.43 no.3
    • /
    • pp.341-346
    • /
    • 2016
  • The objectives of this study were to 1) evaluate the efficiency of the protocol of Agrobacterium-mediated transformation of cucumber to introduce phytoene synthase-2a carotene desaturase (PAC genes); 2) demonstrate the integration of PAC genes into the genome of putative transgenic cucumber based on growth on selection medium, PCR and Southern analysis; 3) evaluate the expression of PAC genes in transgenic cucumber based on the analysis of RT-PCR and Northern blot hybridization. Out of 5,945 cotyledonary-node explants inoculated with Agrobacterium, 65 (1.1%) explants produced 238 shoots. Integration of PAC genes into the genome of the cucumber was demonstrated based on the analysis of gDNA-PCR, 21 out of the 238 plants regenerated; while 6 plants proved positive for Southern blot hybridization. Transgene expression was demonstrated based on analysis of RT-PCR, 6 plants proved positive out of the 6 plants analyzed; while 4 plants out of 6 proved positive during Northern blot hybridization. This study successfully demonstrated the production of transgenic cucumber, integration, and expression of the PAC gene in cucumber.

Induction of Defense Response Against Rhizoctonia solani in Cucumber Plants by Endophytic Bacterium Bacillus thuringiensis GS1

  • Seo, Dong-Jun;Nguyen, Dang-Minh-Chanh;Song, Yong-Su;Jung, Woo-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.3
    • /
    • pp.407-415
    • /
    • 2012
  • An endophytic bacterium, Bacillus thuringiensis GS1, was isolated from bracken (Pteridium aquilinum) and found to have maximal production of chitinase (4.3 units/ml) at 5 days after culture. This study investigated the ability of B. thuringiensis GS1 to induce resistance to Rhizoctonia solani KACC 40111 (RS) in cucumber plants. Chitinase activity was greatest in RS-treated plants at 4 days. ${\beta}$-1,3-Glucanase activity was highest in GS1-treated plants at 5 days. Guaiacol peroxidase (GPOD) activity increased continuously in all treated plants for 5 days. Ascorbate peroxidase (APX) activity in RS-treated plants was increased 1.5-fold compared with the control at 4 days. Polyphenol oxidase (PPO) activity in RS-treated plants was increased 1.5-fold compared with the control at 3 days. At 5 days after treatment, activity staining revealed three bands with chitinase activity (Ch1, Ch2, and Ch3) on SDS-PAGE of cucumber plants treated with GS1+RS, whereas only one band was observed for RS-treated plants (Ch2). One GPOD isozyme (Gp1) was also observed in response to treatment with RS and GS1+RS at 4 days. One APX band (Ap2) was present on the native-PAGE gel of the control, and GS1- and GS1+RS-treated plants at 1 day. PPO bands (Po1 and Po2) from RS- and GS1+RS-treated plants were stronger than in the control and GS1-treated plants upon native-PAGE at 5 days. Taken together, these results indicate that the induction of PR proteins and defense-related enzymes by B. thuringiensis GS1 might have suppressed the damping-off caused by R. solani KACC 40111 in cucumber plants.

Influence of CGMMV Infection Times on Growth and Quality of Watermelon and Cucumber (CGMMV 감염시기가 수박과 오이의 생육 및 품질에 미치는 영향)

  • Ko, Sug-Ju;Lee, Yong-Hwan;Lee, Tae-Seon;Yang, Kwang-Yeol;Park, Jin-Woo;Choi, Hong-Soo
    • Research in Plant Disease
    • /
    • v.10 no.1
    • /
    • pp.48-52
    • /
    • 2004
  • We investigated the effect of infection time of CGMMV on the growth and quality of watermelon and cucumber plants. The effect (damages by CGMMV) was estimated on the watermelon where CGMMV had been inoculated at different growth stages, vegetative (transplanting stage, vegetative growth stage) and reproductive growth stage (fruiting stage and fruit hypertrophy stage). In the case of cucumber, CGMMV was inoculated at transplanting stage and Erst flowering stage, respectively. When watermelon was infected with CGMMV at vegetative growth stage, vine length, internode length, leaf area, and fruit weight of the plants largely decreased compared with control plants, while the infected plant growth was not very different from control plants when it was infected at reproductive growth stage. Brix of the fruit of watermelon also decreased when the plants was infected with the virus earlier than fruiting stage. The occurrence of 'Pisubag', internal discoloration and decomposition of watermelon fruits, tended to be increased as earlier infection time with CGMMV In the case of cucumber infection time with CGMMV did not influence earlier growth of the plants, but did later growth showing that plant height, vine length, internode length, number of leaf, leaf wide, and leaf length of the plants decreased as infection time became to be earlier.

Root Colonization and ISR-mediated Anthracnose Disease Control in Cucumber by Strain Enterobacter asburiae B1

  • Bharathkumar, S.;Park, Jin-Woo;Han, Ji-Hee;Park, Kyung-Seok
    • The Plant Pathology Journal
    • /
    • v.25 no.4
    • /
    • pp.333-343
    • /
    • 2009
  • Here, we show that an endophytic bacterial strain, Enterobacter asburiae B1 exhibits the ability to elicit ISR in cucumber, tobacco and Arabidopsis thaliana. This indicates that strain B1 has a widespread ability to elicit ISR on various host plants. In this study, E. asburiae strain B1 did not show antifungal activity against tested major fungal pathogens, Colletotrichum orbiculare, Botrytis cinerea, Phytophthora capsici, Rhizoctonia solani, and Fusarium oxysporum. Moreover, the siderophore production by E. asburiae strain B1 was observed under in vitro condition. In greenhouse experiments, the root treatment of strain B1 significantly reduced disease severity of cucumber anthracnose caused by fungal pathogen C. orbiculare compared to nontreated control plants. By root treatment of strain B1 more than 50% disease control against anthracnose on cucumber was observed in all greenhouse experiments. Simultaneously, under the greenhouse condition, the soil drench of strain B1 and a chemical inducer benzothiadiazole (BTH) to tobacco plants induced GUS activity which is linked with activation of PR promoter gene. Furthermore, in Arabidopsis thaliana plants the soil drench of strain B1 induced the defense gene expression of PR1 and PDF1.2 related to salicylic acid and jasmonic acid/ethylene signaling pathways, respectively. In this study, for the main focus on root colonization by strain B1 associated with defense responses, bacterial cells of strain B1 was tagged with the gfp gene encoding the green fluorescent protein in order to determine the colonization pattern of strain B1 in cucumber. The gfp-tagged B1 cells were found on root surface and internal colonization in root, stem, and leaf. In addition to this, the scanning electron microscopy observation showed that E. asburiae strain B1 was able to colonized cucumber root surface.

Growth and Yield of Tomato and Cucumber Plants in Polycarbonate or Glass Greenhouses

  • Kwon, Joon Kook;Khoshimkhujaev, Bekhzod;Lee, Jae Han;Yu, In Ho;Park, Kyoung Sub;Choi, Hyo Gil
    • Horticultural Science & Technology
    • /
    • v.35 no.1
    • /
    • pp.79-87
    • /
    • 2017
  • We examined the effect of two greenhouse covering materials (glass or solid polycarbonate sheets) on the light environment and growth of tomato and cucumber plants. Spectral analysis showed that polycarbonate sheets entirely blocked radiation in both the UV - B (300 - 320 nm) and UV - A (320 - 400 nm) ranges, whereas glass transmitted UV - A and was only opaque to UV - B. The transmittance of photosynthetically active radiation (400 - 700 nm) and near infrared radiation (700 - 1100 nm) was higher in polycarbonate than glass. Air and soil temperatures were not significantly different between greenhouses covered with either material. The growth of cucumber plants was slightly affected by covering materials, whereas no significant changes in growth parameters were observed for tomato plants. The color parameters of tomato fruits were affected by the cover material, whereas cucumber fruits showed similar coloration in both glass and polycarbonate greenhouses.

Observations of Infection Structures on the Leaves of Cucumber Plants Pre-treated with Arbuscular Mycorrhiza Glomus intraradices after Challenge Inoculation with Colletotrichum orbiculare

  • Lee, Chung-Sun;Lee, Yun-Jeong;Jeun, Yong-Chull
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.237-243
    • /
    • 2005
  • Resistance inductions on the leaves of cucumber plant by an arbuscular mycorrhiza Glomus intraradices were investigated. In addition, the infection structures were observed at the penetration sites on the leaves of plant inoculated with Colletotrichum orbiculare using a fluorescence microscope. The severity of anthracnose disease caused by Colletotrichum orbiculare was significantly decreased on the leaves of cucumber plant colonized with G intraradices compared with those of non-treated control plants. As a positive control, pre-treatment with DL-3-aminobutyric acid (BABA) caused a remarkable reduction of the disease severity on the pathogen-inoculated leaves. There were no significant differences in the frequency of either germination or appressorium formation of the plant pathogen between mycorrhiza colonized and non-treated plants. It was also the same on the BABA pre-treated plants. However, the frequency of callose formation was significantly high on the leaves of G intraradices colonized plants compared to those of non-treated control plants at 5 days after challenge inoculation. On the leaves of BABA treated plants callose formation was not significantly high than those of non-treated, although the disease severity was more strongly suppressed. It was suggested that the resistance induced by colonization with G. intraradices might be related to the enhancement of callose formation at the penetrate sites on the leaves invaded by the pathogen, whereas resistance by BABA did not.

Plant Growth Monitoring Using Thermography -Analysis of nutrient stress- (열영상을 이용한 작물 생장 감시 -영양분 스트레스 분석-)

  • 류관희;김기영;채희연
    • Journal of Biosystems Engineering
    • /
    • v.25 no.4
    • /
    • pp.293-300
    • /
    • 2000
  • Automated greenhouse production system often require crop growth monitoring involving accurate quantification of plant physiological properties. Conventional methods are usually burdensome, inaccurate, and harmful to crops. A thermal image analysis system can accomplish rapid and accurate measurements of physiological-property changes of stressed crops. In this research a thermal imaging system was used to measure the leaf-temperature changes of several crops according to nutrient stresses. Thermal images were obtained from lettuce, cucumber, and pepper plants. Plants were placed in growth chamber to provide relatively constant growth environment. Results showed that there were significant differences in the temperature of stressed plants and non-stressed plants. In a case of the both N deficiency and excess, the leaf temperatures of cucumber were $2^{\circ}C$ lower than controlled temperature. The leaf temperature of cucumber was $2^{\circ}C$ lower than controlled temperature only when it was under N excess stress. For the potassium deficiency or excess stress, the leaf temperaures of cucumber and hot pepper were $2^{\circ}C$ lower than controls, respectively. The phosphorous deficiency stress dropped the leaf temperatures of cucumber and hot pepper $2^{\circ}C$ and $1.5^{\circ}C$ below than controls. However, the leaf temperature of lettuce did not change. It was possible to detect the changes in leaf temperature by infrared thermography when subjected to nutrition stress. Since the changes in leaf temperatures were different each other for plants and kinds of stresses, however, it is necessary to add a nutrient measurement system to a plant-growth monitoring system using thermography.

  • PDF

Transgenic Tobacco Plants Introduced with cDNA of Cucumber Mosaic Virus Satellite RNA (오이 모자이크 바이러스 위성RNA의 cDNA가 도입된 형질전환 담배의 육성)

  • 이상용;홍은주;최장경
    • Korean Journal Plant Pathology
    • /
    • v.11 no.1
    • /
    • pp.80-86
    • /
    • 1995
  • The cDNA of CMV-As satellite RNA was introduced into tobacco plants (Nicotiana tabacum cv. Samsun NN) using a binary Ti plasmid vector system of Agrobacterium tumefaciens. The cDNA of satellite RNA introduced into tobacco plants was detected by polymerase chain reaction (PCR) and molecular hybridization analyses. Symptom development was distinctly suppressed in the transgenic tobacco plants when inoculated with CMV-Co. CMV concentration in the transgenic tobacco plants was decreased to 1/40 of non-transgenic tobacco plants. The kanamycin resistance gene of the transgenic tobacco plants was also detected in the progeny.

  • PDF

Studies on the Control of Fusarium Wilt of tile Cucurbitaceous Plants(1) Investigation on the Pathogenicity of Fusarium Isolates from tile Wilted Cucurbitaceous Plants (오이류 덩굴 쪼김병 (만할병) 방제에 관한 연구 (1) 오이류 덩굴쪼김병균(만할병균)의 기생성에 관한 조사)

  • Lee Du Hyung
    • Korean journal of applied entomology
    • /
    • v.7
    • /
    • pp.69-75
    • /
    • 1969
  • These studies aimed to investigating the pathogenicity of Fusarium isolates from the wilted cucur bitaceous plants and the pathogenicity of 24 isolates to cucumber, oriental cantaloup, oriental pickling melon, sponge gourd. muskmelon and watermelon were as follows. 1) The isolates from wilted watermelon and melon severely and one of the isolates was slightly pathogenicon oriental pickling melon or oriental cantaloup. 2) The isolates from wilted cucumber were four types. some of the isolates were severely pathogenic on cucumber and infected oriental cantaloup. oriental pickling melon and melon. Some of the isolates were not pathogenic or slightly pathogenic on cucumber. but these were severely pathogenic on oriental pickling melon. One of the isolates was severely pathogenic on oriental cantaloup oriental pickling melon and melon, but no pathogenic on cucumber and one of the isolates was also severely pathogenic on oriental cantaloup. oriental pickling melon and melon and moderatly pathogenic' on water melon. 3) The isolates from wilted oriental cantaloup were four types some of the isolates infected oriental cantaloup, oriental pickling melon and melon severely and some of the isolates were pathogenic on oriental cantaloup. oriental pickling melon. melon and watermelon. One of the isolates, was slightly pathogenic on oriental pickling melon and melon but one of the isolates was highly pathogenic on melon and infected watermelon slightly. 4) Wilt Fusarium of the cucurbitaceous plants could divide into the group of wilt Fusarium of watermelon, cucumber and muskmelon according to the pathogenicity but it will have to rearrange to one form species from several form species of wilt Fusarium of the cucurbitaceous plants and ought to divide to races according to pathogenicity on severely fixed differential varieties which selected from the cucurbitaceous plants. because of the degree of pathognicity and host range are not surely fixed between isolates of wilt Fusarium of the cucurbitaceous plants tested.

  • PDF