DOI QR코드

DOI QR Code

Production of transgenic cucumber expressing phytoene synthase-2A carotene desaturase gene

  • Jang, Hyun A (Department of Biology, Chungnam National Univ.) ;
  • Utomo, Setyo Dwi (Department of Agronomy and Horticulture, Faculty of Agriculture University of Lampung) ;
  • Kwon, Suk Yoon (Korea Research Institute of Bioscience and Biotechnology) ;
  • Ha, Sun-Hwa (Department of Genetic Engineering and Graduate School of Biotechnology, Kyung Hee University) ;
  • Xing-guo, Ye (Institute of Crop Sciences, Chinese Academy of Agricultural Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement) ;
  • Choi, Pil Son (Department of Medicinal Plant Resources, Nambu University)
  • Received : 2016.08.09
  • Accepted : 2016.09.19
  • Published : 2016.09.30

Abstract

The objectives of this study were to 1) evaluate the efficiency of the protocol of Agrobacterium-mediated transformation of cucumber to introduce phytoene synthase-2a carotene desaturase (PAC genes); 2) demonstrate the integration of PAC genes into the genome of putative transgenic cucumber based on growth on selection medium, PCR and Southern analysis; 3) evaluate the expression of PAC genes in transgenic cucumber based on the analysis of RT-PCR and Northern blot hybridization. Out of 5,945 cotyledonary-node explants inoculated with Agrobacterium, 65 (1.1%) explants produced 238 shoots. Integration of PAC genes into the genome of the cucumber was demonstrated based on the analysis of gDNA-PCR, 21 out of the 238 plants regenerated; while 6 plants proved positive for Southern blot hybridization. Transgene expression was demonstrated based on analysis of RT-PCR, 6 plants proved positive out of the 6 plants analyzed; while 4 plants out of 6 proved positive during Northern blot hybridization. This study successfully demonstrated the production of transgenic cucumber, integration, and expression of the PAC gene in cucumber.

Keywords

References

  1. Chee PP (1990) Transformation of Cucumis sativus tissue by Agrobacterium tumefaciens and the regeneration of transformed plants. Plant Cell Rep 9:245-248
  2. Cho MA, Song YM, Park YO, Ko SM, Min SR, Liu JR, Choi PS (2005a) The use of glufosinate as a selective marker for the transformation of cucumber (Cucumis sativus L.). Korean J Plant Biotechnology 32:161-165 https://doi.org/10.5010/JPB.2005.32.3.161
  3. Cho MA, Song YM, Park YO, Ko SM, Min SR, Liu JR, Choi PS (2005b) Production of transgenic melon from the cultures of cotyledonary-node explant using Agrobacterium-mediated transformation. Korean J Plant Biotechnol 32:257-262 https://doi.org/10.5010/JPB.2005.32.4.257
  4. Dellaporta SL, Wood J, Hicks JB (1983) Maize DNA miniprep. In: Malmberg R, Messing J, Sussex (eds), Molecular Biology of Plants: A laboratory Course Manual, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York. pp 36-37
  5. Dong JZ, Yang MZ, Jia SR, Chua NH (1991) Transformation of melon (Cucumis melo L.) and expression from the cauliflower mosaic virus 35S promoter in transgenic melon plants. Biotechnology 9:858-863 https://doi.org/10.1038/nbt0991-858
  6. Frame BR, Shou H, Chikwamba RK, Zhang Z, Xiang C, Fonger TM, Ellen S, Pegg K, Li B, Nettleton DS, Pei D, Wang K (2002) Agrobacterium tumefaciens-mediated transformation of maize embryos using a standard binary vector system. Plant Physiol 129:13-22 https://doi.org/10.1104/pp.000653
  7. Fraser PD, Romer S, Chipton CA, Mills PB, Kiano JW, Misawa N, Drake RG, Schuch W, Bramley PM (2002) Evaluation of transgenic tomato plants expressing an additional phytoene synthase in a fruit-specific manner. Proc Natl Acad Sci USA 99:1092-1097 https://doi.org/10.1073/pnas.241374598
  8. Gaba V, Zelcer A, Gal-On A (2004) Cucurbit biotechnology-the importance of virus resistance. In Vitro Cell Dev Biol Plant 40:346-358 https://doi.org/10.1079/IVP2004554
  9. Goodwin TW, Britton G (1988) Distribution and analysis of carotenoids. In: Goodwin TW (ed.) Plant pigments, Academic Press, Padstow, Cornwall, pp 61-132
  10. Ha SH, Kim JK, Kim JB, Jung HR, Kim YM, Suh SC (2009) Fusion polynucleotide for biosynthesis of $\beta$-carotene comprising selfcleavage 2A sequence and transformed cell using the same. Korean Patent No. 100905219
  11. Ha SH, Liang YS, Jung HR, Ahn MJ, Suh SC, Kweon SJ, Kim DH, Kim YM, Kim JK (2010) Application of two bicistronic systems involving 2A and IRES sequences to the biosynthesis of carotenoids in rice endosperm. Plant Biotechnology Journal 8:928-938 https://doi.org/10.1111/j.1467-7652.2010.00543.x
  12. Hinchee MAW, Connor-Ward DV, Newell CA, McDonnell RE, Sato SJ, Gasser CS, Fischhoff DA, Re DB, Fraley RT, Horsch RB (1988) Production of transgenic soybean plants using Agrobacterium-mediated gene transfer. Bio/Technology 6:915-922
  13. Jang HA, Kim HA, Kwon SY, Choi DW, Choi PS (2011) The use of cotyledonary-node explants in Agrobacterium tumefaciens-mediated transformation of cucumber (Cucumis sativus L.). Kor J Plant Biotechnol 38:198-202 https://doi.org/10.5010/JPB.2011.38.3.198
  14. Jang HA, Lim KM, Kim HA, Park YI, Kwon SY, Choi PS (2013) Development of transgenic cucumbers expression Arabidopsis Nit gene. J Plant Biotechnol 40:198-202 https://doi.org/10.5010/JPB.2013.40.4.198
  15. Kim HA, Lee BY, Jeon JJ, Choi DW, Choi PS, Utomo SD, Lee JH, Kang TH, Lee YJ (2008) GUS gene expression and plant regeneration via somatic embryogenesis in cucumber (Cucumis sativus L.). J Plant Biotechnol 35:275-280 https://doi.org/10.5010/JPB.2008.35.4.275
  16. Kim HA, Min SR, Choi DW, Choi PS, Hong SG (2010) Development of transgenic cucumber expressing TPSP gene and morphological alterations. J Plant Biotechnol 37:1-5 https://doi.org/10.5010/JPB.2010.37.1.001
  17. Kim MJ, Kim JK, Kim HJ, Pak JH, Lee JH, Kim DH, Choi HK, Jung HW, Lee JD, Chung YS, Ha SH (2012) Genetic modification of the soybean to enhance the $\beta$-Carotene content through seedspecific expresion. PLoS ONE 7(10): e48287 https://doi.org/10.1371/journal.pone.0048287
  18. Kodama H, Irifune K, Kamada H, Morikawa H (1993) Transgenic roots produced by introducing Ri-rol genes into cucumber cotyledons by particle bombardment. Transgenic Res 2:147-152 https://doi.org/10.1007/BF01972608
  19. Kose E, Koc N K (2003) Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) and plant regeneration. Biotech EQ 17:51-62
  20. Lin YT, Lin C W, Chung C H, Su M H, Ho H Y, Yeh S D, Jan F J, Ku H M (2011) In vitro regeneration and genetic transformation of Cucumis metuliferus through cotyledon organogenesis. HortScience 46:616-621
  21. Morris WL, Ducreux LJ, Fraser PD, Millam S, Taylor MA (2006) Engineering carotenoid biosynthesis in potato tubers. Metab Eng 8:253-863 https://doi.org/10.1016/j.ymben.2006.01.001
  22. Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol Plant 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  23. Nambara E, Marion-Poll A (2005) Abscisic acid biosynthesis and catabolism. Annu Rev of Plant Biol 56:165-185 https://doi.org/10.1146/annurev.arplant.56.032604.144046
  24. Nishibayashi S, Kayakawa T, Nakajima T, Suzuki M, Kaneko H (1996) CMV protection in transgenic cucumber plants with an introduced CMV-O cp gene. Theorl Appl Genet 93:672-678
  25. Olhoft PM, Somers DA (2001) L-Cysteine increases Agrobacteriummediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20:706-711 https://doi.org/10.1007/s002990100379
  26. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of golden rice through increased pro-vitamin A content. Nature Biotechnol 23:482-487 https://doi.org/10.1038/nbt1082
  27. Ravanello MP, Ke D, Alvarez J, Huang B, Shewmaker CK (2003) Coordinate expression of multiple bacterial carotenoid genes in canola leading to altered carotenoid production. Metab Eng 5:255-263 https://doi.org/10.1016/j.ymben.2003.08.001
  28. Saramento GG, Alpert K, Tang FA, Punja ZK (1992) Factors influencing Agrobacterium tumefaciens mediated transformation and expression of kanamycin resistance in pickling cucumber. Plant Cell Tiss Org Cult 31:185-193
  29. Simmonds DH, Donaldson PA (2000) Genotype screening for proliferative embryogenesis and biolistic transformation of short-season soybean genotypes. Plant Cell Rep 19:485-490 https://doi.org/10.1007/s002990050760
  30. Sommer A (1989) New imperatives for an old vitamin (A): VII E. V. McCollum International Lecture ship in Nutrition. J Nutr 119:96-100 https://doi.org/10.1093/jn/119.1.96
  31. Southern E (1975) Detection of specific sequences among DNA fragments separated by gel electrophoresis. J Mol Biol 98:503-512 https://doi.org/10.1016/S0022-2836(75)80083-0
  32. Trulson AJ, Simpson RB, Shahin EA (1986) Transformation of cucumber (Cucumis sativus L.) plants with Agrobacterium rhizogenesis. Theor Appl Genet 73:11-15
  33. Utomo SD (2004a) Transformasi genetik lima varietas kedelai menggunakan Agrobacterium. Jurnal Agrotropika IX 2:95-101
  34. Utomo SD (2004b) Pengaruh strain agrobacterium terhadap efisiensi transformasi genetik jagung genotype Hibrida Hi-II. Ilmu Pertanian (Agricultural Science) 11:1-10
  35. Utomo SD (2005) Pengaruh L-Sistein terhadap efisiensi transformasi genetik jagung (Zea mays) menggunakan Agrobacterium. Bul Agron 33:7-16
  36. Wang J, Zhang SJ, Wang X, Wang LN, Xu HN, Wang XF, Shi QH, Wei M, Yang FJ (2013) Agrobacterium-mediated transformation of cucumber (Cucumis sativus L.) using a sense mitogen-activated protein kinase gene (CsNMAPK). Plant Cell Tiss Org Cult 113:269-277 https://doi.org/10.1007/s11240-012-0266-y
  37. Ye X, Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A ($\beta$-carotene) biosynthetic pathway. Science 287:303-305 https://doi.org/10.1126/science.287.5451.303
  38. Zhang Z, Xing A, Staswick P, Clemente TE (1999) The use of glufosinate as a selective agent in Agrobacterium-mediated transformation of soybean. Plant Cell Tiss Org Cult 56:37-46 https://doi.org/10.1023/A:1006298622969