• Title/Summary/Keyword: cubic boron nitride

Search Result 56, Processing Time 0.023 seconds

Growth of Hexagonal Boron Nitride Thin Films on Silicon Using a Single Source Precursors

  • Boo, Jin-Hyo;Lee, Soon-Bo;Casten Rohr;Wilson Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.120-120
    • /
    • 1998
  • Boron nitride (BN) films have attracted a growing interest for a variety of t technological applications due to their excellent characteristics, namely hardness, c chemical inertness, and dielectrical behavior, etc. There are two crystalline phases 1551; of BN that are analogous to phases of carbon. Hexagonal boron nitride (h-BN) has a a layered s$\sigma$ucture which is spz-bonded structure similar to that of graphite, and is t the stable ordered phase at ambient conditions. Cubic boron nitride (c-BN) has a z zinc blende structure with sp3-bonding like as diamond, 따ld is the metastable phase a at ambient conditions. Among of their prototypes, especially 삼Ie c-BN is an i interesting material because it has almost the same hardness and thermal c conductivity as di없nond. C Conventionally, significant progress has been made in the experimental t techniques for synthesizing BN films using various of the physical vapor deposition 밍ld chemical vapor deposition. But, the major disadvantage of c-BN films is that t they are much more difficult to synthesize than h-BN films due to its narrow s stability phase region, high compression stress, and problem of nitrogen source c control. Recent studies of the metalorganic chemical vapor deposition (MOCVD) of I III - V compound have established that a molecular level understanding of the d deposition process is mandatory in controlling the selectivity parameters. This led t to the concept of using a single source organometallic precursor, having the c constituent elements in stoichiometric ratio, for MOCVD growth of 삼Ie required b binary compound. I In this study, therefore, we have been carried out the growth of h-BN thin f films on silicon substrates using a single source precursors. Polycrystalline h-BN t thin films were deposited on silicon in the temperature range of $\alpha$)() - 900 $^{\circ}$C from t the organometallic precursors of Boron-Triethylamine complex, (CZHs)3N:BRJ, and T Tris(dimethylamino)Borane, [CH3}zNhB, by supersonic molecular jet and remote p plasma assisted MOCVD. Hydrogen was used as carrier gas, and additional nitrogen w was supplied by either aDlIDonia through a nozzle, or nitrogen via a remote plasma. T The as-grown films were characterized by Fourier transform infrared spectroscopy, x x-ray pthotoelectron spectroscopy, Auger electron spectroscopy, x-ray diffraction, t transmission electron diffraction, optical transmission, and atomic force microscopy.roscopy.

  • PDF

Synthesis of TiN-Coated cBN Powder by Sol-Gel Method Using Titanium (IV) Isopropoxide (티타늄 이소프로폭사이드를 이용한 졸-겔법에 의한 TiN 코팅 cBN 분말 합성)

  • Lee, Youn Seong;Kim, Sun Woog;Lee, Young Jin;Lee, Ji Sun;Shin, Dongwook;Kim, Sae-Hoon;Kim, Jin Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.373-379
    • /
    • 2020
  • In this study, TiN-coated cBN (cubic-structure boron nitride) powders were successfully synthesized by a sol-gel method using titanium (IV) isopropoxide (TTIP) and by controlling the heat treatment conditions. After the sol-gel process, amorphous nano-sized TiOx was uniformly coated on the surface of cBN powder particles. The obtained TiOx-coated cBN powders were heated at 1,000~1,300℃ for 1 or 6 h in a flow of 95%N2-5%H2 mixed gas. With increasing temperature, the chemical composition of the TiOx coating layer changed in the order of TiO2→Ti6O11→Ti4O7→TiN due to reduction of the Ti ions. The TiN coating layer was observable in the samples heated at 1,200℃ and appeared as the main phase in the sample heated at 1,300℃. The resulting thickness of the TiN coating layer of the sample heated at 1,300℃ was approximately 45~50 nm.

Effect of Residual Oxygen in a Vacuum Chamber on the Deposition of Cubic Boron Nitride Thin Film (진공조의 잔류산소가 입방정질화붕소 박막 합성에 미치는 영향)

  • Oh, Seung-Keun;Kim, Youngman
    • Journal of the Korean institute of surface engineering
    • /
    • v.46 no.4
    • /
    • pp.139-144
    • /
    • 2013
  • c-BN(cubic boron nitride) is known to have extremely high hardness next to diamond, as well as very high thermal and chemical stability. The c-BN in the form of film is useful for wear resistant coatings where the application of diamond film is restricted. However, there is less practical application because of difficult control of processing variables for synthesis of c-BN film as well as unclear mechanism on formation of c-BN. Therefore, in the present study, the structural characterization of c-BN thin film were investigated using $B_4C$ target in r.f. magnetron sputtering system as a function of processing variables. c-BN films were coated on Si(100) substrate using $B_4C$ (99.5% purity). The mixture of nitrogen and argon was used for carrier gas. The deposition processing conditions were changed with substrate bias voltage, substrate temperature and base pressure. Fourier transform infrared microscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were used to analyze crystal structures and chemical binding energy of the films. In the case of the BN film deposited at room temperature, c-BN was formed in the substrate bias voltage range of -400 V~ -600 V. Less c-BN fraction was observed as deposition temperature increased and more c-BN fraction was observed as base pressure increased.

MODIFICATION OF INITIALLY GROWN BN LAYERS BY POST-N$^{+}$ IMPLANTATION

  • Byon, E-S.;Lee, S-H.;Lee, S-R.;Lee, K-H.;Tian, J.;Youn, J-H.;Sung, C.
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.351-355
    • /
    • 1999
  • BN films with a high content of cubic phase has been deposited by a variety of techniques. It is well known that c-BN films grow with a unique microstructure consisting of $sp^2$ and $sp^{3-}$ bonded layers. Because of existence of the initially grown $sp^{2-}$ /bonded layer, BN films are not adhesive to the substrates. In this study, post-N$^{+ }$ / implantation was applied to improve the adhesion of the films. A Monte Carlo program TAMIX was used to simulate this modification process. The simulation showed nitrogen concentration profile at $1200\AA$ in depth in case of 50keV -implantation energy. FTIR spectra of the $N^{+}$ implanted specimens demonstrated a strong change of absorption band at 1380 cm$^{ -1 }$The films were also investigated by HRTEM. From these results, it is concluded that the post ion implantation could be an effective technique which improves the adhesion between BN film and substrate.

  • PDF

Grindability Evaluation of Super-Abrasives for Surface Carburized and Heat Treated Materials (표면침탄 열처리강의 초입자연삭 가공시 연삭성 평가)

  • 이용철;김경년;곽재섭
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.11
    • /
    • pp.55-63
    • /
    • 2003
  • In this study, an experimental research of grinding characteristics using super-abrasives for surface carburized and heat treated SCM415 materials, which were usually used to make a linear motion guide block and were comparatively hard-to-machine materials, was carried out. In order to conduct a high efficiency and a accuracy grinding of such materials, grinding processes using CBN (Cubic boron nitride) and 38P grinding wheels have been attempted on a surface grinding machine. The grindability according to each grinding conditions was evaluated by means of a grinding force, a surface roughness and a residual stress. The experimental methods and results were presented in this paper. And also, from a proposed truing method the CBN wheels that combined a copper and a break truer gave a full scope to the wheel's performance.

Cutting Characteristics of CBN Ball Endmills for STD-11 of Various Hardnesses (STB-11 경도변화에 따른 CBN볼 엔드밀의 절삭특성)

  • 최상우;이기우;이세균;이종찬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.1078-1082
    • /
    • 1997
  • The use of CBN tool material has been greatil increased because of the superior metal cutting performance for the machining of hardened steels. This paper presents some experimental results on the ball endmilling of hardened steels. Three different hardnesses of STB-11 workpieces were machined using CBN ball endmills, and the machining charteristics including cutting forces, tool wear, and surface roughness of machined surface were compared. It has been found that the CBN ball endmill works better in the machining of harder workpieces. The microscopic examination explains that this unusual phenomenon is cause by the difference of microstructure of each workpieces.

  • PDF

Chip Formation of WC-Co on Micro-cutting in SEM (SEM내 미소절삭에 의한 초경합금재의 칩 생성 기구)

  • 허성중;김원일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.604-607
    • /
    • 2003
  • This study investigates the micro-cutting of cemented carbides using PCD(polycrystalline diamond) and PCBN(polycrystalline cubic boron nitride) cutting tools are performed with SEM direct observation method. The purpose of this study is to make clear the cutting mechanism of cemented carbides and the fracture of WC particles at the plastic deformation zone in orthogonal micro-cutting. And also to achieve systematic understanding, the effect of machining parameter on chip formation and machined surface was investigated, including cutting speed. depth of cut and various tool rake angle.

  • PDF

Analysis of Thermal Displacement of PCBN Tool Holder for Machining Accuracy in Hard Turning (하드터닝에서 CBN 공구홀더의 열변형이 가공정밀도에 미치는 영향)

  • 노승국;이찬홍;하재용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.363-366
    • /
    • 2003
  • The hard turning is a turning operation performed in high strength alloy steels (HRC>30) in order to reach surface roughness close to those obtained in grinding. This is possible because of availability of improved tool materials (polycrystalline cubic boron nitride. PCBN), ad more rigid machine tools. According to many previous work of hard turning mechanism, the maximum temperature of cutting can be raised up to 100$0^{\circ}C$. As the heat generation rate is very high, the thermal displacement of tool holder cannot be negligible. Therefore, the aim of this paper is to analyze effects of high heat generation at CBN tool tip to the thermal displacement of a tool holder in hard turning and finally geometric accuracy. The thermal behavior of a CBN tool holder is investigated by numerical simulation and experiment, and the result shows thermal elongation of microns order is possible during hard turning process.

  • PDF

Machinability Evaluation of CBN Ball End Milling in Die & Mold Steels with High Hardness (고경도 금형강의 CBN 볼 엔드밀 가공에서 가공성 평가)

  • Kim, Hong-Gyoo;Sim, Jae-Hyung;Lee, Jong-Chan
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.16 no.4
    • /
    • pp.119-126
    • /
    • 2007
  • Generally, the machinability of materials that have a good mechanical properties is poor. The material having a high strength, high toughness in high temperature and wear resistance, it is difficult to remove a chip from workpiece. STD11 and NAK80 are kinds of these materials and these materials can be used in many industrial fields. But it is limited in use because of high cost and poor machinability. In this experimental study, the cutting of STD11 and NAK80 were used to decide the machinability and the tool shape of CBN ball end mill. From the results, the CBN ball end mill is verified that the estimated cutting edge shape of rake angle 30 degree has consistent effect on the tool wear and cutting force.

Tool Material Dependence of Hard Turning on The Surface Quality

  • Park, Young-Woo
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.3 no.1
    • /
    • pp.76-82
    • /
    • 2002
  • This paper presents an experimental study of the effect of cutting tool materials on surface quality when turning hardened steels. Machining tests on a lathe are performed using polycrystalline cubic boron nitride (PCBN) and ceramic tools at various cutting conditions without coolant. From the experiments, it is observed that the radial force is the largest force component regardless the type of tool used. The specific cutting energy for the hard turning is estimated to be considerably smaller than the specific grinding energy. It is also found that cutting force and surface roughness with the PCBN tools are higher and better than those with the ceramic tools under the same cutting condition. It is due that the PCBN tools transfer the generated heat more effectively than the ceramic tools due to their higher thermal conductivity. The optimal cutting conditions for the best surface quality are selected by using an orthogonal array concept.