• Title/Summary/Keyword: crystallographic group

Search Result 230, Processing Time 0.02 seconds

Electron Redistribution of Clavalanate on Binding to a $\beta$-Lactamase

  • Sang-Hyun Park;Hojing Kim
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.4
    • /
    • pp.491-496
    • /
    • 1993
  • A class A ${\beta}$-lactamase from Staphylococcus aureus PC1 complexed with 3R,5R-clavulanate is studied. The starting geometry for the computation is the crystal structure of the ${\beta}$-lactamase. Docking of the clavulanate to the enzyme is done exploiting the requirements of electrostatic and shape complementarity between the enzyme and clavulanate. This structure is then hydrated by water molecules and refined by energy minimization and short molecular dynamics simulation. In the energy refined structure of this complex, the carboxyl group of the clavulanate is hydrogen bonded to Lys-234, and the the carbonyl carbon atom of the clavulanate is adjacent to the $O_{\gamma}$ of Ser-70. It is found that a crystallographic water molecule initially located at the oxyanion hole, which is formed by the two -NH group of Ser-70 and Gln-237, is replaced by the carbonyl oxygen atom of the 3R,5R-clavulanate after docking and energy reginement. The crystallographic water molecules are proved to be important in ligand binding. Glu-166 residue is found to be repulsive to the binding of clavulanate, which is in agreement with experimental observation. Arg-244 residue is found to be important to the binding of clavulanate as well as to interaction with C2 side chain of the clavulanate. The electron density redistribution of the clavulanate on binding to the ${\beta}$-lactamase in studied by an ab initio quantum-mechanical calculation. A significant redistribution of electron density of the clavulanate is induced by the enzyme, toward the enzyme, toward the transition state of the enzymatic reaction.

Electrophilic Attack of the Phenyl Isocyanate Carbon at the Bridging Imido Nitogen: Preparation and Structure of$ Mo_2({\mu-N(CONPh)Ph})({\mu-NPh)(NPh)_2(S_2CNEt_2)_2$

  • 김경;Lee, Soon W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1211-1216
    • /
    • 1998
  • Bis(diethyldithiocarbamato)ioxomolybdenum(VI), cis-MoO2(S2CNEt2)2, 1, reacted with chlorotrimethylsilane (Me33SiCl) to give a seven-coordinate, pentagonal bipyramidal complex MoOC12(S2CN]Et2)2, 3, in which the oxo ligand is trans to the chloride ligand and the two chloride ligands are mutually cis. The monooxo molybdenum complex bis(diethyidithiocarbamato)oxomolybdenum(IV), MoO(S2CNEt2)2, 2, reacted with phenyl isocyanate (PhNCO) to give an Mo dimer MO2{μ-N(CONPh)Ph}(μ-NPh)(NPh)2(S2CNEt2)2, 4, which contains an Mo-Mo bond, two diethyldithiocarbamato ligands, two terminal imido (NPh) ligands, and two bridging hnido (NPh) ligands. One of the two bridging NPh ligands seemed to have been attacked by the electrophilic phenyl isocyanate carbon, which suggests that the bridging imido NPh ligand is more nucleophilic than the terminal one. Crystallographic data for 3: monoclinic space group P21/c, a=8.908(l) Å, b=17.509(3) Å, c=12.683(2) Å, β=110.15(1)°, Z=4, R(wR2)=0.0611(0.1385). Crystallographic data for 4-THF: orthorhombic space group P212121, a=17.932(4) Å, b=22.715(5) Å, c=11.802(3) Å, Z=4, R(wR2)=0.0585(0.1286).

C-H…H-Fe Dihydrogen Bonding: Synthesis and Structure of $trans-[FeH(NCS(i-Pr)-S)(dppe)_2]I$ $(dppe=Ph_2PCH_2Ch_2PPh_2)$ (C-H…H-Fe Dihydrogen 결합: $trans-[FeH(NCS(i-Pr)-S)(dppe)_2]I$ 착물의 합성 및 구조)

  • 이지화;이순원
    • Korean Journal of Crystallography
    • /
    • v.11 no.1
    • /
    • pp.10-15
    • /
    • 2000
  • Compound trans-[FeH(NCS(i-Pr)-S)(dppe)₂](1) reacted with isopropyl iodide (i-PrI) to give an Fe(II)-organic isothiocyanide complex, trans-[FeH(NCS(i-Pr)-S)(dppe)₂]I (2). Compound 2 was structurally characterized, in which the hydride ligand appears to be involved in the "dihydrogen" bonding, M-H…H-C. Crystallographic data for 2: monoclinic space group P2₁/n, a=13.490(2)Å, b=17.269(3)Å, c=21.384(3)Å, β=90.682(7)°, Z=4, R(wR₂)=0.0348(0.0894).

  • PDF

Isolation and Structure of $[Ph_3P(OH)]^+[ $N_3$]^-$ ($[Ph_3P(OH)]^+[ $N_3$^-$의 분리 및 구조)

  • Beom Jun Lee;Won Seok Han;Soon Won Lee
    • Korean Journal of Crystallography
    • /
    • v.12 no.3
    • /
    • pp.141-144
    • /
    • 2001
  • From the reaction of Na[Ga(N₃)₄] with PPh₃, an ionic compound [Ph₃P(OH)]/sup +/[N₃]/sup -/ (1) was isolated. Compound 1 was characterized by spectroscopy (¹H-NMR, /sup 13C{¹H}-NMR, and IR) and X-ray diffraction. Crystallographic data for 1 : orthorhombic space group P2₁2₁2₁, a = 10.491 (4) Å, b=11.603(5)Å, c=13.149(5)Å, Z=4, R(wR₂)=0.0547(0.0978).

  • PDF

Synthesis and Molecular Structure of Macrocyclic Chlorotetraamine Cadmium(II) Complex (거대고리 Chlorotetraamine Cadmium(II) 착물의 합성과 분자 구조)

  • 최기영;서일환;추금홍
    • Korean Journal of Crystallography
    • /
    • v.11 no.3
    • /
    • pp.133-136
    • /
    • 2000
  • The molecular structure of [Cd(L)Cl]Cl·2H₂O(1)(L=3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,0/sup 1.18/,0/sup 7.12/]docosane) has been determined by X-ray diffraction. Crystallographic dta for 1: triclinic space group P1, a=9.671(1), b=10.784(1), c=12.679(2)Å, α=112.31(1), β=99.49(1), γ=93.95(1)°, V=1230.6(3)ų, Z=2, R=0.0779. The coordination of the cadmium atom is a distorted square-pyramid with four secondary amines of the macrocycle occupying the basal sites (Cd-N/sub av/=2.300(3)Å) and a terminal chlorine atom at the axial position with a Cd-Cl(1) distance of 2.463(2)Å.

  • PDF

$[Ni(dppe)_2]$의 합성 및 구조 (Synthesis and Structure of $[Ni(dppe)_2] (dppe=Ph_2PCH_2CH_2PPh_2)$)

  • Kim, Wan -Sung;Lee, Ji-Hwa;Lee, Soon W.
    • Korean Journal of Crystallography
    • /
    • v.11 no.2
    • /
    • pp.80-83
    • /
    • 2000
  • Compound [Ni(P(OEt)3)4] (1) reacted with bis(diphenylphosphino)ethane (Ph2PCH2CH2Ph2, dppe) to give bis(bis(diphenylphosphine)ethane)nickel(0), [Ni(dppe)2] (2). Compound 2 was characterized by spectroscopy (1H-and 31P{1H}-NMR) and X-ray crystallography. Crystallographic data for 2: monoclinic space group P21/n, a=9.826(1)Å, b=21.167(2)Å, c=21.425(2)Å, β=91.957(9)°, Z=4, R(wR2)=0.0377(0.0882).

  • PDF

유기실리카와 나노기공형성 수지의 상용성 변화에 의한 나노기공의 구조 변화

  • 차국헌;최연승;김상율;진문영
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.52-52
    • /
    • 2002
  • Recently, nanoporous low-k materials using porogen (pore generating material) template method have gained much attraction due to the feasible advantage of dielectric constant decrease with the increase of porogen content, which is burning out and making air void by thermal curing. In nanoporous thin films, further, control of pore size and its distribution is very important to retain suitable thermal, mechanical and electrical properties. In this study, nanoporous low-k films were prepared with MTMS-BTMSE copolymer and porogen. The effect of interaction of copolymer matrix and porogen on pore size and distribution was comparatively to investigate with molecular structure and end functional group. The characterization of nanoporous thin film prepared was also performed using various techniques including NMR, GPC, Ellipsometer, FE-SEM, TGA, and FT-IR.

  • PDF

Comparative study on the morphological properties of graphene nanoplatelets prepared by an oxidative and non-oxidative route

  • An, Jung-Chul;Lee, Eun Jung;Yoon, So-Young;Lee, Seong-Young;Kim, Yong-Jung
    • Carbon letters
    • /
    • v.26
    • /
    • pp.81-87
    • /
    • 2018
  • Morphological differences in multi-layered graphene flakes or graphene nanoplatelets prepared by oxidative (rGO-NP, reduced graphene oxide-nanoplatelets) and non-oxidative (GIC-NP, graphite intercalation compound-nanoplatelets) routes were investigated with various analytical methods. Both types of NPs have similar specific surface areas but very different structural differences. Therefore, this study proposes an effective and simple method to identify structural differences in graphene-like allotropes. The adsorptive potential peaks of rGO-NP attained by the density functional theory method were found to be more scattered over the basal and non-basal regions than those of GIC-NP. Raman spectra and high resolution TEM images showed more distinctive crystallographic defects in the rGO-NP than in the GIC-NP. Because the R-ratio values of the edge and basal plane of the sample were maintained and relatively similar in the rGO-NP (0.944 for edge & 1.026 for basal), the discrepancy between those values in the GIC-NP were found to be much greater (0.918 for edge & 0.164 for basal). The electrical conductivity results showed a remarkable gap between the rGO-NP and GIC-NP attributed to their inherent morphological and crystallographic properties.

Strontium Barium Metaborate, $Sr_{1.36}Ba_{1.64}(B_3O_6)_2$

  • 김지원;윤춘섭;추금홍;김문집;이진호;김진규;서일환
    • Korean Journal of Crystallography
    • /
    • v.12 no.1
    • /
    • pp.1-4
    • /
    • 2001
  • Single crystals of strontium barium metaborate, Sr/sub 1.36/Ba/sub 1.64/(B₃O/sub 6/)₂, were grown for the first time by the high-temperature-solution-growth technique, and a detailed structure analysis was carried out with the space group R3c. The metaborate (B₃O/sub 6/)/sup 3-/ anion planar groups in the title compound form infinite layers parallel to (001) plane, and Sr and Ba atoms are alternatively placed between the layers and are octahedrally coordinated by six O(2) atoms in the neighbouring anion rings.

  • PDF