• Title/Summary/Keyword: crystalline temperature

Search Result 1,631, Processing Time 0.031 seconds

Electrochemical Characterization of Cobalt Oxide Xerogel Electrode for Supercapacitor (수퍼커패시터용 산화코발트 건조겔전극의 전기화학적 특성)

  • Kim Han-Joo;Shin Dal-Woo;Kim Yong-Chul;Kim Seong-Ho;Park Soo-Gil
    • Journal of the Korean Electrochemical Society
    • /
    • v.3 no.3
    • /
    • pp.146-151
    • /
    • 2000
  • So fine cobalt oxide xerogel powders were prepared by using a unique solution chemistry associated with the sol-gel process. The effect of thermal treatment on the crystalinity, particle structure, and corresponding electrochemical properties of the resulting xerogel remained amorphous as $Co(OH)_2$ up to $160^{\circ}C$ With an increase in the temperature above $200^{\circ}C$, both the surface area and pore volume decreased sharply, because the amorphous $Co(OH)_2$ decomposed to form CoO that was subsequently oxidized to form crystalline Co304. In addition, the changes in the crystallinity, and particle structure all had significant but coupled effects on the electrochemical properties of the xerogels. A maximum capacitance of 192F1g was obtained for an electrode prepared with the $CoO_x$ Xerogel calcined at$150^{\circ}C$, which was consistent with the maxima exhibited in both the surface area and pore volume. This capacitance was attributed solely to a surface redox mechanism.

Microstructure and dielectric properties in the La2O3-doped BaTiO3 system (La2O3 첨가에 따른 BaTiO3의 미세구조 및 유전특성)

  • Choi, Woo-Jin;Moon, Kyoung-Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.30 no.3
    • /
    • pp.103-109
    • /
    • 2020
  • The effect of La2O3 addition on the crystalline phase, microstructure, and dielectric properties of BaTiO3 has been studied as a function of the amounts of La2O3. 0.3 mol% TiO2-excess BaTiO3 powder was synthesized by solid-state reaction, and then the powder compacts with various amounts of La2O3 were sintered at 1250℃ for 2 hours. Room temperature XRD showed changes in the lattice parameters and a decrease of tetragonality (c/a) as the amounts of La2O3 increased. It can be explained that the phase transition from tetragonal to cubic phase occurred because La3+ replaced Ba2+ site, which increased the instability of the tetragonal phase. As La2O3 was added over 0.1 mol%, the critical driving force for growth (Δgc) increased over maximum driving force (Δgmax). As the result, the grain size decreased with La2O3 addition. Dielectric constant decreased as the amounts of La2O3 increased, which was analyzed with crystal structure and microstructure.

A Novel Runner Design for Flow Balance of Cavities in Multi-Cavity Injection Molding (다수 빼기 사출성형에서 캐비티간 충전균형을 위한 새로운 런너의 설계)

  • Park, Seo-Ri;Kim, Ji-Hyun;Lyu, Min-Young
    • Polymer(Korea)
    • /
    • v.33 no.6
    • /
    • pp.561-568
    • /
    • 2009
  • Small injection molded articles are generally molded by multi-cavity injection molding. The most important thing in multi-cavity molding is flow imbalance among the cavities because it affects the physical property and the quality of products. The cavity filling balance can be achieved by flow balance in the runner through the thermal balance. In this study, novel screw type runner or helical type runner has been developed for the flow balance in the runner and performed experiment and computer simulation. Flow balance has been observed using various screw type runners for several resins such as amorphous and crystalline polymers including low and high viscosities grades. Flow balance experiments have been performed for various injection speeds since the flow balance can be affected by injection speed among the injection conditions. Experimental results have been compared with computational results and they showed good agreement. The cavity filling balance can be achieved by the screw runner where the temperature distribution is uniform through the circulation flow along the screw channel in the screw runner. It has been verified that the novel screw runner is very effective device in flow balance in the multi-cavity injection molding. cavity filling imbalance, multi-cavity injection molding, runner design, screw runner, thermal balance.

Recoil Effects of Neutron-Irradiated Metal Permanganates (중성자조사 금속 과망간산염의 반조효과)

  • Lee, Byung-Hun;Kim, Jung-Gwan
    • Nuclear Engineering and Technology
    • /
    • v.20 no.2
    • /
    • pp.105-111
    • /
    • 1988
  • The chemical effects resulting from the capture of the thermal neutron by manganese in various crystalline permanganates, that is, potassium permanganate ammonium permangante and barium permanganate, have been investigated. The effect of pH of solvent on the distribution of radioactive manganese chemical species, that is, cationic $^{56}$ Mn, $^{56}$ MnO$_2$ and $^{56}$ MnO$_4$$^{[-10]}$ produced in the permanganates by $^{55}$ Mn(n, r) $^{56}$ Mn reaction was studied by using various adsorbents and ion-exchanger, that is, zeolite A-3, kaolinite, alumina, manganese dioxide and Dowex-50 The distribution of radioactive MnO$_4$$^{[-10]}$ in kaolinite and alumina has higher than that in other adsorbents and ion-exchanger at a representative pH value of 4, 7 and 9, respectively. The yield of radioactive MnO$_4$$^{[-10]}$ is higher at pH 4 End pH 9 than at pH 7. The thermal annealing behavior of recoil manganese atoms produced in the permanganates by $^{55}$ Mn(n, r) $^{56}$ Mn reaction was also studied. The retention of MnO$_4$$^{[-10]}$ in the thermal annealing is increased as annealing temperature increases when it was treated at 10$0^{\circ}C$ and 13$0^{\circ}C$. The recoil effect of permanganates was explained by the hot zone model.

  • PDF

The Effect of Thermal Annealing and Growth of $CuGaSe_2$ Single Crystal Thin Film for Solar Cell Application (태양전지용 $CuGaSe_2$ 단결정 박막 성장과 열처리 효과)

  • Hong, Kwang-Joon;You, Sang-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.23 no.2
    • /
    • pp.59-70
    • /
    • 2003
  • A stoichiometric mixture of evaporating materials for $CuGaSe_2$ single crystal thin films was prepared from horizontal electric furnace. Using extrapolation method of X-ray diffraction patterns for the polycrystal $CuGaSe_2$, it was found tetragonal structure whose lattice constant $a_0$ and $c_0$ were $5.615{\AA}$ and $11.025{\AA}$, respectively. To obtain the single crystal thin films, $CuGaSe_2$ mixed crystal was deposited on thoroughly etched semi-insulating GaAs(100) substrate by the hot wall epitaxy (HWE) system. The source and substrate temperatures were $610^{\circ}C$ and $450^{\circ}C$, respectively. The crystalline structure of the single crystal thin films was investigated by the photoluminescence and double crystal X-ray diffraction (DCXD). The carrier density and mobility of $CuGaSe_2$ single crystal thin films measured with Hall effect by van der Pauw method are $5.01\times10^{17}cm^{-3}$ and $245cm^2/V{\cdot}s$ at 293K. respectively. The temperature dependence of the energy band gap of the $CuGaSe_2$ obtained from the absorption spectra was well described by the Varshni's relation, $E_g$(T)=1.7998 eV-($8.7489\times10^{-4}$ eV/K)$T^2$/(T+335K). After the as-grown $CuGaSe_2$ single crystal thin films was annealed in Cu-, Se-, and Ga-atmospheres, the origin of point defects of $CuGaSe_2$ single crystal thin films has been investigated by the photoluminescence(PL) at 10 K. The native defects of $V_{CU},\;V_{Se},\;Cu_{int}$ and $Se_{int}$ obtained by PL measurements were classified as a donors or acceptors type. And we concluded that the heat-treatment in the Cu-atmosphere converted $CuGaSe_2$ single crystal thin films to an optical n-type. Also, we confirmed that Ga in $CuGaSe_2$/GaAs did not form the native defects because Ga in $CuGaSe_2$ single crystal thin films existed in the form of stable bonds.

Hydrogen production using CdS-TiO2 composite photocatalysts (CdS-TiO2 복합 광촉매계에 의한 수소제조)

  • Kim, Soo-Sun;Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Journal of Hydrogen and New Energy
    • /
    • v.11 no.4
    • /
    • pp.161-169
    • /
    • 2000
  • In the case of photocatalytic hydrogen production from water, the performance-property relationships of CdS-TiO2 film type composite catalysts were investigated. To control the physical properties of the primary particles, the mixture of CdS and TiO2 nano-sols prepared by the sol-gel method at room temperature was hydrothermally treated at 240oC for 12hr. The film electrodes were prepared by the casting method. The photocurrents measured by a photoelectrochemical method and the hydrogen production rates measured by a photochemical method were closely dependent on the physical properties such as crystalline form, primary particle size and CdS/TiO2 mole ratio, and these varied in the range of 1.2~2.6 mA/cm2 and $1.0{\sim}1.6{\times}10-3mol/hr$, respectively.

  • PDF

Effect of Al Precursor Addition Time on Catalytic Characteristic of Cu/ZnO/Al2O3 Catalyst for Water Gas Shift Reaction (Water Gas Shift 반응을 위한 Cu/ZnO/Al2O3 촉매에서 Al 전구체 투입시간에 따른 촉매 특성 연구)

  • BAEK, JEONG HUN;JEONG, JEONG MIN;PARK, JI HYE;YI, KWANG BOK;RHEE, YOUNG WOO
    • Journal of Hydrogen and New Energy
    • /
    • v.26 no.5
    • /
    • pp.423-430
    • /
    • 2015
  • $Cu/ZnO/Al_2O_3$ catalysts for water gas shift (WGS) reaction were synthesized by co-precipitation method with the fixed molar ratio of Cu/Zn/Al precursors as 45/45/10. Copper and zinc precursor were added into sodium carbonate solution for precipitation and aged for 24h. During the aging period, aluminum precursor was added into the aging solution with different time gap from the precipitation starting point: 6h, 12h, and 18h. The resulting catalysts were characterized with SEM, XRD, BET surface measurement, $N_2O$ chemisorption, TPR, and $NH_3$-TPD analysis. The catalytic activity tests were carried out at a GHSV of $27,986h^{-1}$ and a temperature range of 200 to $400^{\circ}C$. The catalyst morphology and crystalline structures were not affected by aluminum precursor addition time. The Cu dispersion degree, surface area, and pore diameter depended on the aging time of Cu-Zn precipitate without the presence of $Al_2O_3$ precursor. Also, the interaction between the active substance and $Al_2O_3$ became more stronger as aging duration, with Al precursor presented in the solution, increased. Therefore, it was confirmed that aluminum precursor addition time affected the catalytic characteristics and their catalytic activities.

The Photoluminescence Characteristic of Ba2-xSrxSiO4:Eu2+ Phosphor Particles Prepared by Spray Pyrolysis (분무열분해 공정에 의해 제조된 Ba2-xSrxSiO4:Eu2+ 형광체의 발광특성)

  • Kang, Hee Sang;Park, Seung Bin;Koo, Hye Young;Kang, Yun Chan
    • Korean Chemical Engineering Research
    • /
    • v.44 no.6
    • /
    • pp.609-613
    • /
    • 2006
  • Ba2-xSrxSiO4:Eu2+ phosphor particles with the high photoluminescence (PL) intensity under long wavelength ultraviolet (UV) were prepared by spray pyrolysis. The photoluminescence, morphological and crystalline characteristics of $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles prepared by spray pyrolysis were investigated. $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles prepared by spray pyrolysis had various colors from bluish green to yellow by changing the ratio of barium and strontium of the host material. In case of x=0, the main emission peak of $Ba_2SiO_4:Eu^{2+}$ phosphor was 500 nm. In case of x=2, the main emission peak of $Sr_2SiO_4:Eu^{2+}$ phosphor was 554nm. $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles obtained by spray pyrolysis had spherical shape and hollow structure. On the other hand, the post-treated $Ba_{2-x.}Sr_{x.}SiO_4:Eu^{2+}$ phosphor particles had large size and irregular shape. The $Ba_{1.488}Sr_{0.5}SiO_4:Eu_{0.012}{^{2+}}$ phosphor particles had the maximum PL intensity after post-treatment at temperature of $1300^{\circ}C$ for 3h under reduction atmosphere.

Nano-crystallization Behavior and Optical Properties of Na2O-Nb2O5-TeO2Glasses (1) (Na2O-Nb2O5-TeO2계 유리의 광학적 성질과 나노-결정화거동 (1))

  • 김현규;류봉기;차재민;김병관;이재성
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.11
    • /
    • pp.1078-1084
    • /
    • 2003
  • In order to develop a new type of nonlinear optical materials or photocatlaysts, Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glasses were prepared using conventional melt quenching method, and the crystallization behaviors and optical properties of these glasses was investigated. The optical and physical properties for Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glasses are: refractive index, n=2.04$\pm$0.04; density, p (g/㎤)=4.87$\pm$0.58; optical energy band of the transmission cut-off wavelength, E$_{0}$ (eV)=3.14$\pm$0.04. The transparent glass ceramics consisting of the nanocrysatls were obtained when the Na$_2$O-Nb$_2$ $O_{5}$-Te $O_2$ glass was first heat-treated at 3$50^{\circ}C$ for 1 h and than at 40$0^{\circ}C$ for 1 h. A cubic crystalline phase consisting of the nano-crysatls transforms into a stable phase at temperature above 47$0^{\circ}C$ for 1 h.

A Study on Properties of Domestic Fly Ash and Utilization as an Insulation material (국산 Fly Ash의 특성 및 단열재로의 이용에 관한 연구)

  • 박금철;임태영
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.2
    • /
    • pp.135-146
    • /
    • 1983
  • This study is to investigate the properties of domestic fly ash for utilization as data in regard to fly ash which is by-product of domestic coal powder plants and the possibility of utilization as insulation material of domestic fly ash. Composition refractoriness size distribution density contents of hollow particles and crystalline phase were examined as the properties of domestic fly ash. As to the fired test pieces of fly ash by itself that varied contents of hollow particles with four kinds and of the fly ash-clay-saw dust system linear shrinkage bulk density app. porosity compressive strength thermal conductivity and structures were investigated for the possibility of utilization as an insulation material. The results are as follows : 1. The properties of the fly ash I) The constituent particle of the fly ash is spherical and it contains not a few hollow particles (floats by water 0.30-0.50 floats by $ZnCl_2$ aq.(SpG=1.71) 6.97-16.72%). ii) The chemical compositions of fly ash are $SiO_243.9-54.1%$ , $Al_2O_321.0-30.7%$ Ig loss is 7.4-24.1% and the principal of Ig loss is unburned carbon. iii) Fly ash was not suitable to use for mortar and concrete mixture because Ig. loss value is higher than 5% 2. Utilization as insulation material I) The test pieces of original fly ash floats by water floats by ZnCl2 aq(SpG=1.71) p, p t by ZnCl2 aq.(SpG=1.71) that were fired at 110$0^{\circ}C$ represented 0.11-0.18 kcal/mh$^{\circ}$ C as thermal conductivity value. ii) The test pieces which (76.5-85.5) wt% fly ash-(8.5, 9.5) wt% clay-(5.0-15.0) wt% saw dust system(68.0-72.0) wt% fly ash -(17.0-18.0)wt% clay-(10.0-15.0) wt% saw dust system and 59.5 wt% fly ash-25.5 wt% clay-15.0wt% saw dust system were fired at 110$0^{\circ}C$ the thermal conductivity was less than 0.1Kcal/mh$^{\circ}$ C. iii) In view of thermal conductivity and economic aspect insulation materials which added saw dust as blowing agent and clay as inorganic binder are better than that of fly ash as it is or separated hollow fly ash particles. iv) When the saw dust contents increased in the (59.5-90.0) wt% saw dust system and when amount of clay de-creased and firing temperature decreased under the condition of equal addition of saw dust app. porosity increased but bulk density compressive strength and thermal conductivity decreased.

  • PDF