• Title/Summary/Keyword: crystalline phase

Search Result 1,173, Processing Time 0.029 seconds

Properties of GST Thin Films for PRAM with Composition (PRAM 용 GST계 상변화 박막의 조성에 따른 특성)

  • Jang Nak-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.707-712
    • /
    • 2005
  • PRAM (Phase change random access memory) is one of the most promising candidates for next generation Non-volatile Memories. The Phase change materials have been researched in the field of optical data storage media. Among the phase change materials. $Ge_2Sb_2Te_5$ is very well known for its high optical contrast in the state of amorphous and crystalline. However the characteristics required in solid state memory are quite different from optical ones. In this study. the structural Properties of GeSbTe thin films with composition were investigated for PRAM. The 100-nm thick $Ge_2Sb_2Te_5$ and $Sb_2Te_3$ films were deposited on $SiO_2/Si$ substrates by RF sputtering system. In order to characterize the crystal structure and morphology of these films. x-ray diffraction (XRD). atomic force microscopy (AFM), differential scanning calorimetry (DSC) and 4-point measurement analysis were performed. XRD and DSC analysis result of GST thin films indicated that the crystallization of $Se_2Sb_2Te_5$ films start at about $180^{\circ}C$ and $Sb_2Te_3$ films Start at about $125^{\circ}C$.

Optical Properties and Structural Characteristics of Gallium Nitride Thin Films Prepared by Radio Frequency Magnetron Sputtering

  • Cho, Yeon Ki;Kim, Joo Han
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.248.2-248.2
    • /
    • 2014
  • In this study, the optical properties and structural characteristics of gallium nitride (GaN) thin films prepared by radio frequency (RF) magnetron sputtering were investigated. Auger electron and X-ray photoelectron spectra showed that the deposited films consisted mainly of gallium and nitrogen. The presence of oxygen was also observed. The optical bandgap of the GaN films was measured to be approximately 3.31 eV. The value of the refractive index of the GaN films was found to be 2.36 at a wavelength of 633 nm. X-ray diffraction data revealed that the crystalline phase of the deposited GaN films changed from wurtzite to zinc-blende phase upon decreasing the sputtering gas pressure. Along with the phase change, a strong dependence of the microstructure of the GaN films on the sputtering gas pressure was also observed. The microstructure of the GaN films changed from a voided columnar structure having a rough surface to an extremely condensed structure with a very smooth surface morphology as the sputtering gas pressure was reduced. The relationship between the phase and microstructure changes in the GaN films will be discussed.

  • PDF

Synthesis and Characterization of Nanoporous Zirconia (나노세공 Zirconia의 합성 및 특성평가)

  • Woo, Seung-Sik;Kim, Ho-Kun
    • Journal of Powder Materials
    • /
    • v.14 no.5
    • /
    • pp.309-314
    • /
    • 2007
  • Zirconia powders with nano size pores and high specific surface areas were synthesized via aqueous precipitation and hydrothermal synthetic method using $ZrOCl_28H_2O$ and $NH_4OH$ under pH=11 and ambient condition. By this reaction. zirconia hydrate $(ZrO_x(OH)_{4-2x})$ was primarily synthesized and the obtained zirconia hydrate was heat treated hydrothermally using an autoclave at various temperatures under pH=11. X-ray diffraction, Scanning electron microscopy, Energy dispersive X-ray spectroscopy, FT-IR, Raman, Particle size analysis, DTA-TG, and BET techniques were used for the characterization of the powder. The synthesized zirconia showed an amorphous phase, however, the phase was transformed to the crystalline state during the hydrothermal process. The observed crystalline phase above $160^{\circ}C$ was a mixed phase of monoclinic and tetragonal zirconia. By the BET analysis, it was found that the specific surface area was ranged in $126{\sim}276m^2/g$ and the zirconia had the cylindrical shaped pores with average diameter of $2{\sim}7nm$.

Influence of Total Saponin from Korean Red Ginseng on Structural Changes in Phospholipid Membranes and Ghost Erythrocytes (고려홍삼의 총사포닌에 의한 인지질막과 적혈구막의 구조적 변화)

  • Kim, Yuri-A.;Vlasimir, R.Akoev;Tarahovsky, Yuri-S.;Ruslan, Elemesov;Park, Kyeong-Mee;Song, Yong-Bum;Rhee, Man-Hee;Park, Hwa-Jin
    • Journal of Ginseng Research
    • /
    • v.19 no.1
    • /
    • pp.39-44
    • /
    • 1995
  • Total saponin from Korean red ginseng changed thermodynamic parameters of membranes from dipalmitoylphosphatidylcholine (DPPC) and ghost erythrocytes of human. In liposomes from DPPC, temperature of the main transition (Lb'-La) in liquid-crystalline phase increases by 0.2$^{\circ}C$ in average, but enthalpy does not change. Total saponin at a concentration of smaller than $10^5$% "stabilizes" the timid bilayers. At larger than 0.07 of saponin/DPPC ratio, saponin leads to an exclusion of the bound lipid molecules from the main phase transition into lamella liquid crystalline La-phase. Total saponin influences specifically all erythrocyte membrane transitions in a concentration-dependent manner, i.e. on the structures of all the main membrane skeleton proteins. A high structural specificity of saponin with membrane proteins, could be a base of specificity of physiological response of not only erythrocytes, but also other cells.her cells.

  • PDF

Crystallization Mechanism of Slag-based Glass in $CaO-MgO-Al_2O_3-SiO_2(-Na_2O)$ System (Slag 위주의 $CaO-MgO-Al_2O_3-SiO_2(-Na_2O)$계 유리의 결정화 반응기구)

  • 장승현;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.17 no.1
    • /
    • pp.20-26
    • /
    • 1980
  • The crystallization behaviors of slag-based glass in $CaO-MgO-Al_2O_3-SiO_2(-Na_2O)$ system have been studied. The mother glass containing 16.50 CaO, 7.50MgO, 19.70Al2O3, 50.80SiO3 and 2.09wt% $Na_2O$ was prepared by using Korean domestic raw materials such as granulated slag, serpentine, sea sand and etc. The glass-ceramics composed of major crystalline phase diopside was produced by the heat treatment in a temperature range from 850$^{\circ}$ to 9$25^{\circ}C$ for 0-6hr. The composition and morphology of diopside phase formed in the system were examined by X-ray diffraction analysis and electron microscopy. The kinetic measurements such as J.M. A plot and Arrhenius plot indicated that the process of nucleation of the initially formed diopside phase could be described from the view point of instantaneous nucleation. It was also demonstrated that the linear crystal growth of diopside phase was proceeded by short range diffusion of $Mg^{2+}$ and $Ca^{2+}$ ion. The microstructures of the resulting glass-ceramics were consisted of leafroidal shaped crystalline aggregations.

  • PDF

Analysis of the microstructure of reactively sputtered Ta-N thin films (반응성 스퍼터링방법으로 증착된 Ta-N 박막의 미세구조 분석)

  • 민경훈;김기범
    • Journal of the Korean institute of surface engineering
    • /
    • v.27 no.5
    • /
    • pp.253-260
    • /
    • 1994
  • Ta-N films were reactively sputter deposited by dc magnetron sputtering from a Ta target with a various Ar-N, gas ratio. Electrical resistivity of pure Ta film was 150$\mu$$\Omega$cm and decreased initially with nitrogen addition, and then increased to a value of 220$\mu$$\Omega$-cm~260$\mu$$\Omega$-cm at 9%~23% nitrogen partial flow. Rutherford backscattering spectrometry(RBS) and Auger electron spectroscopy (AES) analysis show that nitrogen content in the film is increased with the nitrogen partial flow. The film contains 58at.% nitrogen at 36% nitrogen partial flow. Both the phase and the microstructure of the as-deposisted films were investigated by x-ray diffractometry(XRD) adn transmission electron microscopy (TEM) at various nitrogen content. The phase of pure Ta film is identified as $\beta$-Ta with a 200$\AA$~300$\AA$ grain size. The phase of Ta film is changed to bcc-Ta as small amount of nitrogen is added. Crystalline Ta2N film was deposited at 24at.% nitrogen content. Amorphous phase is formed over a range of nitrogen content from about 33at.% to 35at.% while crystalline fcc-TaN is observed to form at 39at.%~48at.% nitrogen content.

  • PDF

Novel deposition technology for nano-crystalline silicon thin film at low temperature by hyper-thermal neutral beam assisted CVD system

  • Jang, Jin-Nyoung;Song, Byoung-Chul;Oh, Kyoung-Suk;Yoo, Suk-Jae;Lee, Bon-Ju;Choi, Soung-Woong;Park, Young-Chun;Hong, Mun-Pyo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1025-1027
    • /
    • 2009
  • Novel low temperature deposition process for nano-crystalline Si thin film is developed with the hyper-thermal neutral beam (HNB) technology. By our HNB assisted CVD system, the reactive particles can induce crystalline phase in Si thin films and effectively combine with heating effect on substrate. At low deposition temperature under $80^{\circ}C$, the HNB with proper incident energy controlled by the reflector bias can effectively enhance the nano-crystalline formation in Si thin film without any additional process. The electrical properties of Si thin films can be varied from a-Si to nc-Si according to change of HNB energy and substrate temperature. Characterization of these thin films with conductivity reveal that crystalline of Si thin film can increase by assist of HNB with appropriate energy during low temperature deposition. And low temperature prcoessed nc-Si TFT performance has on-off ratio as order 5.

  • PDF

A Study on the Thermal, Structural and Dielectric Properties of Photo Machinable Glass-Ceramics

  • Lee, Myung-won;Kang, Won-ho
    • Journal of Electrical Engineering and information Science
    • /
    • v.3 no.1
    • /
    • pp.68-72
    • /
    • 1998
  • The photomachinable glass-ceramics of Ag and CeO2 doped Li203-SiO2 (LAS)glass system was investigated as a function of UV irradiation time. After the expose and the non-exposed samples were heated, they went under crystalline phase with DTA, SEM, TEM and XRD of normal/high temperature. In this work, crystalline phases, microstructure and dielectric properties were studied under the various time of UV irradiation and heat treatment.

  • PDF

Synthesis and Mesomorphic Properties of Palladium(II) Complexes Based on 3,4,5-Trialkoxy Benzonitrile Ligands

  • 이명수;유용식;최문근
    • Bulletin of the Korean Chemical Society
    • /
    • v.18 no.10
    • /
    • pp.1067-1070
    • /
    • 1997
  • The synthesis and characterization of the nitrile ligands 3,4,5-tridodecyloxy benzonitrile (7) and 3,4,5-trioctadecyloxy benzonitrile (8), and their corresponding palladium(Ⅱ) complexes are described. The nitrile ligands display only a crystalline phase and do not show liquid crystalline behavior, while their corresponding palladium(Ⅱ) complexes dispaly an enantiotropic columnar mesophase. The induction of the columnar mesophase is mainly due to dimerization through the palladium complexation of the half disk-like nitrile ligands giving rise to a trans square planar geometry.

Photoresponsive Liquid Crystalline Copolymers Bearing a p-Methoxyazobenzene Moiety

  • 최동훈;강석훈;이준열;Asit Baran Samui
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.11
    • /
    • pp.1179-1184
    • /
    • 1998
  • Mesogenic and azo monomers were synthesized and copolymerized to obtain two copolymers composed of methacrylate and itaconate backbone. Glass transition temperatures of the copolymers were found to be slightly higher than ambient temperature. Both the copolymers showed liquid crystalline properties. Trans-cis isomerization in film state was observed under UV-irradiation with a light of 365 nm. Regarding the photochemical phase transition behavior, the transition rate of nematic-to-isotropic state was slightly faster in the methacrylate copolymer during irradiation at 365 nm and the rate of the reverse transition was much faster in itaconate copolymer under thermal effect.