• Title/Summary/Keyword: crystalline material

Search Result 1,027, Processing Time 0.023 seconds

Crystallization of Forsterite Xerogel under Carbon Dioxide: A New Crystalline Material Synthesized by Homogeneous Distribution of Carbonaceous Component into Forsterite Xerogel

  • 송미영;김수주;권혜영;박선희;박동곤;권호진;권영욱;James M. Burlitch
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.5
    • /
    • pp.517-524
    • /
    • 1999
  • By heating the magnesiumsilicate (Mg2SiO4:forsterite) xerogel in carbon dioxide, carbonaceous component was intentionally introduced into the amorphous solid precursor. Carbon was introduced homogeneously as unidentate carbonate. Upon being heated at 800 。C in carbon dioxide, the xerogel which had homogeneously distributed carbonaceous component in it crystallized into a single phase product of a new crystalline material, which had approximate composition of Mg8Si4Ol8C. The powder X-ray diffraction pattern of the new crystalline material did not match with any known crystalline compound registered in the powder diffraction file. Crystallization from amorphous xeroget to the new crystalline phase occurred in a very narrow range of temperature, from 750 。C to 850 。C in carbon dioxide, or in dty oxygen. Upon being heated above 850 。C, carbonaceous component was expelled from the product, accompanied by irreversible transition from the new crystalline material to forsterite.

Analysis of crystalline structure of autogenous tooth bone graft material: X-Ray diffraction analysis (자가치아골이식재의 결정구조 분석: X선 회절 분석)

  • Kim, Gyung-Wook;Yeo, In-Sung;Kim, Su-Gwan;Um, In-Woong;Kim, Young-Kyun
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.37 no.3
    • /
    • pp.225-228
    • /
    • 2011
  • This study evaluated the mineral crystalline structure of an autogenous tooth bone graft material. The crystalline structures of the autogenous tooth bone graft material enamel (AutoBT E+), dentin (AutoBT D+), xenograft (BioOss), alloplastic material (MBCP), allograft (ICB) and autogenous mandibular cortical bone were compared using XRD. The XRD pattern of AutoBT dentin and ICB was similar to that of autogenous bone.

Analysis of static and dynamic characteristics of strain gradient shell structures made of porous nano-crystalline materials

  • Hamad, Luay Badr;Khalaf, Basima Salman;Faleh, Nadhim M.
    • Advances in materials Research
    • /
    • v.8 no.3
    • /
    • pp.179-196
    • /
    • 2019
  • This paper researches static and dynamic bending behaviors of a crystalline nano-size shell having pores and grains in the framework of strain gradient elasticity. Thus, the nanoshell is made of a multi-phase porous material for which all material properties on dependent on the size of grains. Also, in order to take into account small size effects much accurately, the surface energies related to grains and pores have been considered. In order to take into account all aforementioned factors, a micro-mechanical procedure has been applied for describing material properties of the nanoshell. A numerical trend is implemented to solve the governing equations and derive static and dynamic deflections. It will be proved that the static and dynamic deflections of the crystalline nanoshell rely on pore size, grain size, pore percentage, load location and strain gradient coefficient.

PC1D 기반의 재결합 속도 제어를 통한 결정질 태양전지의 최적화

  • Lee, Ji-Seong;Jeong, U-Won;Lee, Jun-Sin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.257-257
    • /
    • 2009
  • This paper explores a control of recombination velocity for optimization the crystalline solar cell. Using PC1D simulator, the efficiency of crystalline solar cell was measured to be about 17%. The results show that the lower the front recombination velocity is, the more efficiency of crystalline solar cell improves. The work which presented here has profound implications for studies of crystalline solar cell and someday may help solve the problem of optimization for the crystalline solar cells.

  • PDF

Evaluation of Physical Properties of Liner and Cover Material Crystalline admixture (결정질혼화제를 함유한 광산차수재 물성평가)

  • Cho, Yong-Kwang;Kim, Jin-Sung;Kim, Chun-Sik;Jo, Sung-Hyun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2021.05a
    • /
    • pp.227-228
    • /
    • 2021
  • There are various problems caused by environmental pollution around the abandoned mines. In addition, they are exposed to the risk of safety accidents due to sinkholes caused by ground subsidence. Therefore, the ground is stabilized through the filling and construction of abandoned mines using industrial by-products. However, in the case of Backfill Material, secondary pollution caused by acidic drainage and leachate is not suppressed. To solve this problem, the liner and cover material is first installed. Therefore, in this study, the watertightness of the liner and cover material was improved by mixing crystalline admixtures by content.

  • PDF

Influence of Inverted Pyramidal Surface on Crystalline Silicon Solar Cells (결정질 실리콘 태양전지 표면 역 피라미드 구조의 특성 분석)

  • Yang, Jeewoong;Bae, Soohyun;Park, Se Jin;Hyun, Ji Yeon;Kang, Yoonmook;Lee, Hae-Seok;Kim, Donghwan
    • Current Photovoltaic Research
    • /
    • v.6 no.3
    • /
    • pp.86-90
    • /
    • 2018
  • To generate more current in crystalline silicon solar cells, surface texturing is adopted by reducing the surface reflection. Conventionally, random pyramid texturing by the wet chemical process is used for surface texturing in crystalline silicon solar cell. To achieve higher efficiency of solar cells, well ordered inverted pyramid texturing was introduced. Although its complicated process, superior properties such as lower reflectance and recombination velocity can be achieved by optimizing the process. In this study, we investigated optical and passivation properties of inverted pyramid texture. Lifetime, implied-Voc and reflectance were measured with different width and size of the texture. Also, effects of chemical rounding at the valley of the pyramid were observed.

Buried contact solar cells using tri-crystalline silicon wafer (삼상 실리콘 기판을 사용한 저가 전극 함몰형 태양전지)

  • Kwon, Jea-Hong;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.176-180
    • /
    • 2003
  • Tri-crystalline silicon (Tri-Si) wafers have three different orientations and three grain boundaries. In this paper, tri-Si wafers have been used for the fabrication of buried contact solar cells. The optical and micro-structural properties of these cells after texturing in KOH solution have been investigated and compared with those of cast multi-crystalline silicon (multi-Si) wafers. We employed a cost effective fabrication process and achieved buried contact solar cell (BCSC) energy conversion efficiencies up to 15% whereas the cast multi-Si wafer has efficiency around 14%.

  • PDF

Effect of Silica Content on the Dielectric Properties of Epoxy/Crystalline Silica Composites

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.13 no.6
    • /
    • pp.322-325
    • /
    • 2012
  • Crystalline silica was synthesized by annealing amorphous silica at $1,300^{\circ}C$ or $1,400^{\circ}C$ for various times, and the crystallinity was estimated by X-ray diffraction (XRD) analysis. In order to prepare a low dielectric material, epoxy/crystalline silica composites were prepared, and the effect of silica content on the dielectric properties was studied under various functions of frequency and ambient temperature. The dielectric constant decreased with increasing crystalline silica content in the epoxy composites, and it also decreased with increasing frequency. At 120 Hz, the value of 5 wt% silica decreased by 0.25 compared to that of 40 wt% silica, and at 23 kHz, the value of 5 wt% silica decreased by 0.23 compared to that of 40 wt% silica. The value increased with increasing ambient temperature.

A Study on Fabrication of Piezorresistive Pressure Sensor (벌크 마이크로 머쉬닝에 의한 다결정 실리콘 압력센서 제작 관한 연구)

  • 임재홍;박용욱;윤석진;정형진;윤영수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.677-680
    • /
    • 1999
  • Rapid developing automation technology enhances the need of sensors. Among many materials, silicon has the advantages of electrical and mechanical property, Single-crystalline silicon has different piezoresistivity on 야fferent directions and a current leakage at elevated temperature, but poly-crystalline silicon has the possibility of controling resistivity using dopping ions, and operation at high temperature, which is grown on insulating layers. Each wafer has slightly different thicknesses that make difficult to obtain the precisely same thickness of a diaphragm. This paper deals with the fabrication process to make poly-crystalline silicon based pressure sensors which includes diaphragm thickness and wet-etching techniques for each layer. Diaphragms of the same thickness can be fabricated consisting of deposited layers by silicon bulk etching. HF etches silicon nitride, HNO$_3$+HF does poly -crystalline silicon at room temperature very fast. Whereas ethylenediamice based etchant is used to etch silicon at 11$0^{\circ}C$ slowly.

  • PDF

Polyhedral Surface Development Using Quasicrystal System (준결정 시스템을 이용한 다면체 곡면 개발)

  • Kim, Seung-Deog;Lee, Kyoung-Su
    • Journal of Korean Association for Spatial Structures
    • /
    • v.16 no.4
    • /
    • pp.67-73
    • /
    • 2016
  • This paper is a study on Development of polyhedral surfaces Quasicrystal System. Quasicrystal is the quasi-crystalline material, which is the intermediate material of the crystalline material and non-crystalline material. Quasicrystal is a structures that is ordered but not periodic, the basic form is a rhombus. These studies in the field of chemistry will proceed actively studied, in the field of construction a situation that still insufficient research. Therefore, in this paper, we presents the analysis of Quasicrystal system, and the research on the applicability of as dome structures. This paper described some examples of polyhedron form, and method of applying Quasicrystal system.