• Title/Summary/Keyword: crystalline form

Search Result 382, Processing Time 0.033 seconds

Influense of the high-voltage conductivity on peculiarity of polarization ferroelectric polymer on based vinylidenefluoride

  • Kochervinskii, V.V.;Chubunova, E.V.;Lebedinskii, Y.Y.;Pavlov, A.S.;Pakuro, N.I.
    • Advances in materials Research
    • /
    • v.4 no.2
    • /
    • pp.113-132
    • /
    • 2015
  • The phenomena of high-voltage polarization and conductivity in oriented vinylidenefluoride and tetrafluoroethylene copolymer films have been investigated. It was shown that under certain electric fields, injection of carriers from the material of electrodes appears The barrier for holes injection in the copolymer was found to be lower than that for electrons. It results in more effective screening of the external field near the anode than near cathode. Electrones, ejected from cathode, creating negative charge by trapping on the surface. It is shown that the electrons injected from cathodes create a negative homocharge on the copolymer surface and then become captured on the surface shallow traps. Their nature has been studied by the x-ray photoelectron spectroscopy. It was shown that these traps may consist of chemical defects in the form of new functional groups formed by reactions of surface macromolecules with sputtered atoms of aluminum. The asymmetric shape of hysteresis curves was explained by the difference in mobility of injected holes and electrons. These factors caused appearance of "non-closed" hysteresis curves for fluorine-containing polymer ferroelectrics. Hysteresis phenomena observed at low electric fields (below coercive ones) are to associate with the behavior of the domains localized in the ordered regions formed during secondary crystallization of copolymers.

Additive Manufacturing of Various Ceramic Composition Using Inkjet Printing Process (잉크젯 프린팅을 이용한 연속 조성 세라믹 화합물 구조체 형성)

  • Park, Jae-Hyeon;Choi, Jung-Hoon;Hwang, Kwang-Taek;Kim, Jin-Ho
    • Korean Journal of Materials Research
    • /
    • v.30 no.11
    • /
    • pp.627-635
    • /
    • 2020
  • 3D printing technology is a processing technology in which 3D structures are formed by fabricating multiple 2D layers of materials based on 3D designed digital data and stacking them layer by layer. Although layers are stacked using inkjet printing to release various materials, it is still rare for research to successfully form a product as an additive manufacture of multi-materials. In this study, dispersion conditions are optimized by adding a dispersant to an acrylic monomer suitable for inkjet printing using Co3O4 and Al2O3. 3D structures having continuous composition composed of a different ceramic material are manufactured by printing using two UV curable ceramic inks whose optimization is advanced. After the heat treatment, the produced structure is checked for the formation and color of the desired crystals by comparing the crystalline analysis according to the characteristics of each part of the structure with ceramic pigments made by solid phase synthesis method.

A Comparison of the Discharged Products in Environmentally Benign Li-O2 and Na-O2 Batteries (친환경의 리튬 - 공기전지와 소듐 - 공기전지의 방전 생성물 비교 분석 연구)

  • Kang, Jungwon
    • Resources Recycling
    • /
    • v.25 no.3
    • /
    • pp.82-87
    • /
    • 2016
  • The discharged products of Li-$O_2$ and Na-$O_2$ batteries using ether-based electrolyte as next-generation battery system were analyzed. The morphology of the discharged products showed millet-like shape in the both battery systems by FESEM. However, the discharged product, $Li_2O_2$ showed amorphous-like form in the Li-$O_2$ cell while crystalline $NaO_2$ is formed in the Na-$O_2$ cell when confirmed by X-ray diffraction. In this work, we comprehended a principle operating mechanism of Li-$O_2$ and Na-$O_2$ battery.

Fabrication and Characteristics of Porous Silicon (다공성 실리콘의 제조 및 특성에 관한 연구)

  • 이철환;조원일;백지흠;박성용;안춘호;유종훈;조병원;윤경석
    • Journal of the Korean institute of surface engineering
    • /
    • v.28 no.3
    • /
    • pp.182-191
    • /
    • 1995
  • A highly porous silicon layer was fabricated by anodizing single crystalline silicon in a dilute solution of hydrofluoric acid. The color of the porous silicon changed from red and blue to yellow gold during the anodizing process. The current-voltage (I-V) curve of the anodizing process showed a typical Schottky diode rectification form. The cell voltage decreased with the increase of HF concentration in the solution at high current range. However, the voltage was independent on HF concentration in the solution at low current range. The pore size was dependant on anodizing condition (HF concentration, current and anodizing time). The pore size and wall width of porous silicon layer were 4~6 and 1~3 nm, respectively. Surface of the porous silicon was covered with silicon compound ($SiH_x$etc.) according to IR spectrum analysis. The peak wavelength and width of photoluminescence (PL) spectrum of porous silicon were 650~850 nm (1.5~1.9 eV) and 250 nm, respectively. The photoluminescence intensity and peak wavelength, and porosity of porous silicon increased with increasing anodizing current and decreased with increasing HF concentration in the anodizing solution.

  • PDF

Groundwater Flow Characteristics in Crystalline Rock : Review (결정질암반에서의 지하수유동 연구경향)

  • 김천수
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.137-145
    • /
    • 1991
  • Groundwater flow in fractured rocks generates many challenging problems to scientist and engineers in the projects related to oil and geothermal reservoirs, subsurface contaminations and underground openings. To circumvent these problems, the numerical simulation of groundwater system is used as an established tool in these days. Discrete modelling approach emphasizes geometric parameters, aperture and transport properties of fracture. On the other hand, continuum modelling approach uses the parameters formulated in a way of average hydraulic property. In recent years, the results of field observations from underground opening indicate that groundwater in rock mass flows in a channel form. The channel flow is postulated as the result of the combined effects of geometric pattern and aperture variation.

  • PDF

Photocatalytic Degradation of Gaseous Formaldehyde and Benzene using TiO2 Particulate Films Prepared by the Flame Aerosol Reactor

  • Chang, Hyuksang;Seo, Moonhyeok
    • Environmental Engineering Research
    • /
    • v.19 no.3
    • /
    • pp.215-221
    • /
    • 2014
  • Nano-sized $TiO_2$ particles were produced by a premixed flame aerosol reactor, and they were immobilized on a mesh-type substrate in form of particulate film. The reactor made it possible maintaining the original particulate characteristics determined in the flame synthetic process. The particulate morphology and crystalline phase were not changed until the particulate were finally coated on the substrate, which resulted in the better performance of the photocatalytic conversion of the volatile organic compounds (VOCs) in the ultraviolet $(UV)-TiO_2$ system. In the flame aerosol reactor, the various specific surface areas and the anatase weight fractions of the synthesized particles were obtained by manipulating the parameters in the combustion process. The performance of the $TiO_2$ particulate films was evaluated for the destruction of the VOCs under the various UV irradiation conditions. The decomposition rates of benzene and formaldehyde under the irradiation of UV-C of 254 nm in wavelength were evaluated to check the performance of $TiO_2$ film layer to be applied in air quality control system.

Opto-electrical properties of solution based carbon nanotube electrode (용액코팅된 탄소나노튜브 전극의 광전기적 성질)

  • Woo, Jong-Seok;Kim, Sun-Young;Han, Joong-Tark;Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.394-394
    • /
    • 2007
  • Transparent conductive films can serve as a critical component in displays, solar cells, lasers, optical communication devices, and solid state lighting. Carbon nanotube (CNT) based transparent conductive films are fabricated on glass and polymer substrates. CNTs typically exist in form of quasi-crystalline bundles or highly entangled bundles containing tens of individual nanotubes. To achieve full potential, CNTs must be dispersed in a solvent or other organic media. CNTs are acid treated with nitric acid then the stable dispersion of CNTs in polar solvent such as alcohols, DMF, etc. is achieved by sonication. The solubility of CNTs correlates well with the area ratio of the D and G bands from Raman spectrum. Thin films are formed from well dispersed CNT solutions using spray coating method. CNT thin films exhibit a sheet resistance ($R_s$) of nearby $10^3\;{\Omega}/sq$ with a transmittance of around 80% on the visible light range, which is attributed by excellent dispersion and interaction among CNTs, solvents and polymeric binders.

  • PDF

Synthesis of high functional Superconducting Precursor using Organic metal salts method for Electric power transmission (유기금속염을 이용한 고효율 전력 전송용 초전도 전구체 합성)

  • Lee, Sang-Heon
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.270-271
    • /
    • 2005
  • A high Tc superconducting with a nominal composition of $Bi_2Sr_2Ca_2Cu_3O_Y$ was prepared by the citarte method. The solid precursor produced by the dehydration of the gel at $120^{\circ}C$ for 12h is not in the amorphous state as expected but in a crystalline state. X-ray diffraction peaks of nearly the same angular position as the peaks of high Tc phase were observed in the precursor. After pyrolysis at $400^{\circ}C$ and calcination at $840^{\circ}C$ for 4h, the (001)peak of the high Tc phase was cleary observed. Experimental results suggest that the intermediate phase formed before the formation of the superconducting phase may be the most important factro in determining whether it is easy to form the high Tc phase or not. because the nucleation barriers of the two superconducting phase may be altered by the variation of the crystal structures of those intermediate phase.

  • PDF

Photoluminescence characteristics of YAG:Ce phosphor by sol-gel method (졸겔법에 의한 YAG:Ce 형광체의 발광 특성)

  • Choi, Hyung-Wook;Lee, Seung-Kyu;Cha, Jae-Hyeck;Jang, Nak-Won
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.489-490
    • /
    • 2006
  • The Ce-doped YAG(Yttrium Aluminum Garnet, $Y_3Al_5O_{12}$) phosphor powders were synthesized by Sol-gel method. The luminescence, formation process and structure of phosphor powders were investigated by means of XRD, SEM and PL. The XRD patterns show that YAG phase can form through sintering at $1000^{\circ}C$ for 2h. This temperature is much lower than that required to synthesize YAG phase via the conventional solid state reaction method. There were no intermediate phases such as YAP(Yttrium Aluminum Perovskite, $YAlO_3$) and YAM(Yttrium Aluminum Monoclinic, $Y_4Al_2O_9$) observed in the sintering process. The powders absorbed excitation energy in the range 410~510nm. Also, the crystalline YAG:Ce showed broad emission peaks in the range 480~600nm and had maximum intensity at 528nm.

  • PDF

Microwave dielectric properties of $La_2O_3-CaO-B_2O_3$ glass-added alumina ($La_2O_3-CaO-B_2O_3$계 유리 첨가 알루미나 복합체의 유전특성)

  • Lim, Dong-Ha;Kim, Hyun-Beom;Shin, Hyun-Ho
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.323-323
    • /
    • 2007
  • Influence of $La_2O_3$ addition to $CaO-B_2O_3$-based glass on the water leaching resistance of the glass was first investigated. The optimized $La_2O_3-CaO-B_2O_3$(LCB) glass was ball milled for varying time, followed by mixing with $Al_2O_3$ crystalline phase to form $Al_2O_3$-LCB glass composites at $875^{\circ}C$ for 1h. Microwave dielectric properties of the composites were investigated as a function of the ball milling time of the LCB glass. Dielectric constant and quality factor of the composites were 6.31 and 13856 GHz, respectively, when the LCB glass was ball milled for 2h prior to mixing with $Al_2O_3$.

  • PDF