• Title/Summary/Keyword: crystal impedance

Search Result 104, Processing Time 0.022 seconds

Impedance Spectroscopy of (Pb0.92La0.08)(Zr0.95Ti0.05)O3 Ceramics above Room Temperatures

  • Jong-Ho Park
    • Korean Journal of Materials Research
    • /
    • v.34 no.5
    • /
    • pp.242-246
    • /
    • 2024
  • La modified lead zirconate titanate ceramics (Pb0.92La0.08)(Zr0.95Ti0.05)O3 = PLZT-8/95/5 were prepared using the conventional solid state reaction method in order to investigate the complex impedance characteristics of the PLZT-8/95/5 ceramic according to temperature. The complex impedance in the PLZT-8/95/5 ceramic was measured over a temperature range of 30~550 ℃ at several frequencies. The complex dielectric constant anomaly of the phase transition was observed near TU1 = 179 ℃ and TU2 = 230 ℃. A remarkable diffuse dielectric constant anomalous behaviour of the complex dielectric constant was found between 100 ℃ and 550 ℃. The complex impedance spectra below and above TU1 and TU2 were fitted by the superposition of two Cole-Cole types of impedance relaxations. The fast component in the higher frequency region may be due to ion migration in the bulk, and the slow component in the lower frequency region is interpreted to be the formation and migration of ions at the grain boundary or electrode/crystal interfacial polarization.

GROWTH AND CHARACTERIZATION OF $La_3Ga_5SiO_{14}$ SINGLE CRYSTALS BY THE FLOATING ZONE METHOD

  • Yoon, Won-Ki;Auh, Keun-Ho
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1999.06a
    • /
    • pp.253-269
    • /
    • 1999
  • The development of telecommunication and information technology requires to develop new piezoelectric materials with small size, low impedance, wide pass band width and high thermal stability of frequency. Langasite (La3Ga5SiO14) single crystal has been researched substitute of quartz and LiNbO3 for the applications of SAW filter, BAW filter and resonator. Its single crystal growth has been carried out by Czochralski Method. So, in order to get single crystal with higher quality, in this study, lnagasite (La3Ga5SiO14) single crystal was grown by using Floating Zone (FZ) method and characterized. For the growth of langasite single crystals, the langasite powder was synthesized at 135$0^{\circ}C$ for 5hrs and the feed rod was sintered at 135$0^{\circ}C$ for 5hrs. The growing rate was 1.5mm/h and the rotation speed was 15 rpm for an upper rotation and 13 rpm for a lower rotation. In order to prevent the evaporation of gallium oxide, Ar and O2 gas mixture was flowed. The growth direction was analyzed by Laue back-scattered analysis. The composition of grown crystal was analyzed suing XRD and WDS. The electrical properties of grown crystal at various frequencies and temperature were discussed.

  • PDF

APPLICATION OF IMPEDANCE SPECTROSCOPY TO POLYCRYSTALLINE SI PREPARED BY EXCIMER LASER ANNEALING (임피던스 측정법을 이용한 엑시머 레이져 열처리 Poly-Si의 특성 분석)

  • 황진하;김성문;김은석;류승욱
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.200-200
    • /
    • 2003
  • Polycrystalline Si(polysilicon) TFTs have opened a way for the next generation of display devices, due to their higher mobility of charge carriers relative to a-Si TFTs. The polysilicon W applications extend from the current Liquid Crystal Displays to the next generation Organic Light Emitting Diodes (OLED) displays. In particular, the OLED devices require a stricter control of properties of gate oxide layer, polysilicon layer, and their interface. The polysilicon layer is generally obtained by annealing thin film a-Si layer using techniques such as solid phase crystallization and excimer laser annealing. Typically laser-crystallized Si films have grain sizes of less than 1 micron, and their electrical/dielectric properties are strongly affected by the presence of grain boundaries. Impedance spectroscopy allows the frequency-dependent measurement of impedance and can be applied to inteface-controlled materials, resolving the respective contributions of grain boundaries, interfaces, and/or surface. Impedance spectroscopy was applied to laser-annealed Si thin films, using the electrodes which are designed specially for thin films. In order to understand the effect of grain size on physical properties, the amorphous Si was exposed to different laser energy densities, thereby varying the grain size of the resulting films. The microstructural characterization was carried out to accompany the electrical/dielectric properties obtained using the impedance spectroscopy, The correlation will be made between Si grain size and the corresponding electrical/dielectric properties. The ramifications will be discussed in conjunction with active-matrix thin film transistors for Active Matrix OLED.

  • PDF

OLED degradation mechanism study using impedance spectroscopy

  • Kim, Hyun-Jong;Yang, Ji-Hoon;Ye, Seok-Min;Jeong, Jae-Wook;Chang, Seung-Wook;Boris, Crystal;Chung, Ho-Kyoon;Lee, Chang-Hee;Hong, Yong-Taek
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.1022-1025
    • /
    • 2008
  • To the best of our knowledge, for the first time, we applied impedance spectroscopy to analysis on OLED degradation mechanism by monitoring impedance change during constant voltage aging, and modeling OLED with lumped circuit elements. Change in each element value was used to explain charge accumulation and field redistribution in each organic layer.

  • PDF

Structural and electrical properties of lead free ceramic: Ba(Nd1/2Nb1/2)O3

  • Nath, K. Amar;Prasad, K.;Chandra, K.P.;Kulkarni, A.R.
    • Advances in materials Research
    • /
    • v.2 no.2
    • /
    • pp.119-131
    • /
    • 2013
  • Impedance and electrical conduction studies of $Ba(Nd_{1/2}Nb_{1/2})O_3$ ceramic prepared using conventional high temperature solid-state reaction technique are presented. The crystal symmetry, space group and unit cell dimensions were estimated using Rietveld analysis. X-ray diffraction analysis indicated the formation of a single-phase cubic structure with space group $Pm\bar{3}m$. Energy dispersive X-ray analysis and scanning electron microscopy studies were carried to study the quality and purity of compound. The circuit model fittings were carried out using the impedance data to find the correlation between the response of real system and idealized model electrical circuit. Complex impedance analyses suggested the dielectric relaxation to be of non-Debye type and negative temperature coefficient of resistance character. The correlated barrier hopping model was employed to successfully explain the mechanism of charge transport in $Ba(Nd_{1/2}Nb_{1/2})O_3$. The ac conductivity data were used to evaluate the density of states at Fermi level, minimum hopping length and apparent activation energy.

Measurement of all the Elastic, Dielectric and Piezoelectric Properties of PMN-PT Single Crystals (공진법을 이용한 PMN-PT 단결정의 탄성, 유전, 압전상수 측정)

  • 이상한;이수성;노용래;이호용;한진호
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.1
    • /
    • pp.31-38
    • /
    • 2004
  • PMN-PT, a piezoelectric single crystal, has many useful applications such as sensors and actuators. In this paper, all the elastic, piezoelectric, and dielectric constants of the PMN-32%PT single crystals were measured by the resonance method. For the rhombohedral symmetry, a total of twelve independent material constants were measured such as six elastic compliance constants at constant electric field, two dielectric constants at constant stress, and four piezoelectric constants d. Seven sets of crystal samples of each different geometry were prepared for the measurement of length-thickness extensional, thickness extensional, radial, length extensional and thickness shear modes of vibration, respectively. In order to check the validity of the measurement, experimental impedance spectrum of the PMN-PT crystal was compared with numerical data spectrum calculated with the measured material constants. The good agreement between the two spectra confirmed validity of the results in this paper.

Fabrication of Dual-mode Ultrasonic Transducer using PZT

  • Kim, Yeon-Bo;Park, Youn-Rae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.10
    • /
    • pp.914-920
    • /
    • 2002
  • This study investigates the mechanism of a dual mode probe that generates both of the longitudinal and shear waves simultaneously with a single FZT element. Most of conventional ultrasonic probes are constructed to generate either longitudinal or shear waves. After poling, PZT has the hexagonal 6mm crystal symmetry. All possible crystal cuts are checked to determine appropriate Euler transformation angles for efficient excitation of dual modes. For the selected cut, performance of the dual mode element is analyzed through numerical simulation and experiments. Results of the analysis determine the optimal crystal cut for simultaneous generation of P and S waves of equal strength.

A Development of Underwater Acoustic Tonpilz Transducer with the Piezoelectric Single Crystal (압전단결정(72PMN-28PT) 응용 수중음향 톤필츠 트랜스듀서 개발)

  • Kwon, Byung-Jin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.9
    • /
    • pp.532-538
    • /
    • 2016
  • In this paper, a underwater acoustic Tonpilz transducer with the piezoelectric single crystal(72PMN-28PT) is developed. The thickness and the number of piezoelectric elements are theoretically designed with the equivalent circuit analysis to have the desired resonance frequency. In order to compare the performances, a piezoelectric ceramic transducer is also manufactured and their electrical impedance, TVR (transmitting voltage response), RVS (receiving voltage response) and beam pattern are compared.

Electrical properties of piezoelectric PZT thick film by aerosol deposition method (에어로졸 증착법에 의한 압전 PZT 후막의 전기적 특성)

  • Kim, Ki-Hoon;Bang, Kook-Soo;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.25 no.6
    • /
    • pp.239-244
    • /
    • 2015
  • Lead zirconate titanate (PZT) thick films with thickness of $10{\sim}20{\mu}m$ were fabricated on silicon substrate by aerosol deposition method. As-deposited films on silicon were annealed at the temperatures of $700^{\circ}C$. The electrical properties of films deposited by PZT powders were characterized using impedance analyzer and Sawyer-Tower circuit. The PZT powder was prepared by both conventional solid reaction process and sol-gel process. The remanent polarization, coercive field, and dielectric constant of the $10{\mu}m$ thick film with solid reaction process were $20{\mu}C/cm^2$, 30 kV/cm and 1320, respectively. On the other hand, the PZT films by sol-gel process showed a poor dielectric constant of 635. The reason was probably due to the presence of pores produced from organic residue during annealing.

A study on dielectric characteristic of phosphate glass-ceramic for AC-PDP (AC-PDP용 인산염 결정화 유리의 유전적 특성에 관한 연구)

  • Kim, Joon-Hyung;Yon, Seog-Joo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.17 no.3
    • /
    • pp.102-107
    • /
    • 2007
  • Dielectric layer of phosphate glass for plasma display panel (PDP) device made by silk screen printing on soda-lime glass. For regulate thermal expansion coefficient (CTE) of between substrate glass and dielectric layer use addition of $Al_2O_3$ and $TiO_2$. The crystallization process of glass-ceramics for dielectric layer have been examined by DTA, XRD some of optical, electrical properties of the dielectric layer were evaluated by UV-spectrometer, dilatometer, impedance analyser. The principal crystalline phase was identified as zinc metaphosphate [$Zn(PO_3)_2$] and zinc pyrophosphate [$Zn_2P_2O_7$]. Reflectance and dielectric constance increased with the addition of $TiO_2$ filler, dielectric constant lower the out side reflectance unchanging of the adding of $Al_2O_3$ filler. Besides CTE was at about $62{\times}10^{-7}/^{\circ}C$.