• Title/Summary/Keyword: cryptographic system

Search Result 269, Processing Time 0.022 seconds

A Privacy Protection REID System using Random basis ID Allocating (난수 기반의 ID 할당을 이용한 프라이버시 보호 RFID 시스템)

  • Park, Jin-Sung;Choi, Myung-Ryul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.6
    • /
    • pp.1155-1159
    • /
    • 2006
  • In this paper, we have proposed a privacy protection RFID system using random number based ID allocation. Currently, there are rising issues about privacy violation in RFID system. This issues caused by tracking the ID of tag which present unique identity of tag. The proposed system dynamically allocates random basis ID to tag, then the tag can not be traced. The random ID allocation procedures of this system can be operate in cryptographic mode or normal(non-cryptographic) mode. This system can be applied to privacy protected customer tracking RFID system in mesa-outlet stores which tracing customer's moving path.

  • PDF

A Study on the Certification System in Electromic Commerce (전자상거래(電子商去來)의 인증체계(認證體系)에 관한 고찰(考察))

  • Ha, Kang Hun
    • Journal of Arbitration Studies
    • /
    • v.9 no.1
    • /
    • pp.367-390
    • /
    • 1999
  • The basic requirements for conducting electronic commerce include confidentiality, integrity, authentication and authorization. Cryptographic algorithms, make possible use of powerful authentication and encryption methods. Cryptographic techniques offer essential types of services for electronic commerce : authentication, non-repudiation. The oldest form of key-based cryptography is called secret-key or symmetric encryption. Public-key systems offer some advantages. The public key pair can be rapidly distributed. We don't have to send a copy of your public key to all the respondents. Fast cryptographic algorithms for generating message digests are known as one-way hash function. In order to use public-key cryptography, we need to generate a public key and a private key. We could use e-mail to send public key to all the correspondents. A better, trusted way of distributing public keys is to use a certification authority. A certification authority will accept our public key, along with some proof of identity, and serve as a repository of digital certificates. The digital certificate acts like an electronic driver's license. The Korea government is trying to set up the Public Key Infrastructure for certificate authorities. Both governments and the international business community must involve archiving keys with trusted third parties within a key management infrastructure. The archived keys would be managed, secured by governments under due process of law and strict accountability. It is important that all the nations continue efforts to develop an escrowed key in frastructure based on voluntary use and international standards and agreements.

  • PDF

The Using Arduino for Data Communication Cryptographic Module (Arduino를 이용한 데이터 통신 암호 모듈)

  • Lee, Zhou-Sheng;Song, Jong-Gun;Lee, HoonJae;Kwon, DaeHoon;Pak, UiYoung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.231-233
    • /
    • 2013
  • A lot of information is exchanged using data communications in today's modern society. Nowadays many important communications are susceptible to interception and theft for malicious purposes, and is under threat from hackers. Crackers are able to hack into data flows even if the data is encrypted. To ensure strong encryption properties, these cryptographic algorithms are often a burden on devices used for authentication such as a PC or smart phone. This paper proposes an authentication system using the Arduino module. Implementation and application of the communication scheme is designed to minimize the burden of delivering data communication between devices especially where password and encryption is concerned.

  • PDF

Cryptographic Key Generation Method Using Biometrics and Multiple Classification Model (생체 정보와 다중 분류 모델을 이용한 암호학적 키 생성 방법)

  • Lee, Hyeonseok;Kim, Hyejin;Nyang, DaeHun;Lee, KyungHee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.28 no.6
    • /
    • pp.1427-1437
    • /
    • 2018
  • While biometric authentication system has been in general use, research is ongoing to apply biometric data to public key infrastructure. It is a significant task to generate a cryptographic key from biometrics in setting up a public key of Bio-PKI. Methods for generating the key by quantization of feature vector can cause data loss and degrade the performance of key extraction. In this paper, we suggest a new method for generating a cryptographic key from classification results of biometric data using multiple classifying models. Our proposal does not cause data loss of feature vector so it showed better performance in key extraction. Also, it uses the multiple models to generate key blocks which produce sufficient length of the key.

A Late-Round Reduction Attack on the AES Encryption Algorithm Using Fault Injection (AES 암호 알고리듬에 대한 반복문 뒷 라운드 축소 공격)

  • Choi, Doo-Sik;Choi, Yong-Je;Choi, Doo-Ho;Ha, Jae-Cheol
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.22 no.3
    • /
    • pp.439-445
    • /
    • 2012
  • Since an attacker can extract secret key of cryptographic device by occurring an error during encryption operation, the fault injection attack have become a serious threat in cryptographic system. In this paper, we show that an attacker can retrieve the 128-bits secret key in AES implementation adopted iterative statement for round operations using fault injection attack. To verify the feasibility of our attack, we implement the AES algorithm on ATmega128 microcontroller and try to inject a fault using laser beam. As a result, we can extract 128-bits secret key by obtaining just two pairs of correct and faulty ciphertexts.

Secure Device to Device Communications using Lightweight Cryptographic Protocol

  • Ajith Kumar, V;Reddy, K Satyanarayan
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.11
    • /
    • pp.354-362
    • /
    • 2021
  • The device to device (D2D) communication is an important and emerging area for future cellular networks. It is concerned about all aspect of secure data transmission between end devices along with originality of the data. In this paradigm, the major concerns are about how keys are delivered between the devices when the devices require the cryptographic keys. Another major concern is how effectively the receiver device verifies the data sent by the sender device which means that the receiver checks the originality of the data. In order to fulfill these requirements, the proposed system able to derive a cryptographic key using a single secret key and these derived keys are securely transmitted to the intended receiver with procedure called mutual authentication. Initially, derived keys are computed by applying robust procedure so that any adversary feel difficulties for cracking the keys. The experimental results shows that both sender and receiver can identify themselves and receiver device will decrypt the data only after verifying the originality of the data. Only the devices which are mutually authenticated each other can interchange the data so that entry of the intruder node at any stage is not possible.

An Authentication Management using Biometric Information and ECC in IoT-Edge Computing Environments (IoT-EC 환경에서 일회용 생체정보와 ECC를 이용한 인증 관리)

  • Seungjin Han
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.1
    • /
    • pp.142-148
    • /
    • 2024
  • It is difficult to apply authentication methods of existing wired or wireless networks to Internet of Things (IoT) devices due to their poor environment, low capacity, and low-performance processor. In particular, there are many problems in applying methods such as blockchain to the IoT environment. In this paper, edge computing is used to serve as a server that authenticates disposable templates among biometric information in an IoT environment. In this environment, we propose a lightweight and strong authentication procedure using the IoT-edge computing (IoT-EC) system based on elliptic curve cryptographic (ECC) and evaluate its safety.

Key Derivation Functions Using the Dual Key Agreement Based on QKD and RSA Cryptosystem (양자키분배와 RSA 암호를 활용한 이중키 설정 키유도함수)

  • Park, Hojoong;Bae, Minyoung;Kang, Ju-Sung;Yeom, Yongjin
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.479-488
    • /
    • 2016
  • For a secure communication system, it is necessary to use secure cryptographic algorithms and keys. Modern cryptographic system generates high entropy encryption key through standard key derivation functions. Using recent progress in quantum key distribution(QKD) based on quantum physics, it is expected that we can enhance the security of modern cryptosystem. In this respect, the study on the dual key agreement is required, which combines quantum and modern cryptography. In this paper, we propose two key derivation functions using dual key agreement based on QKD and RSA cryptographic system. Furthermore, we demonstrate several simulations that estimate entropy of derived key so as to support the design rationale of our key derivation functions.

A Study on the Security analysis and Applications of Standard Key agreement protocols based on Elliptic curve cryptosystem (타원 곡선에 기반한 표준 키 분배 프로토콜의 안전성 분석 및 응용 분야에 관한 연구)

  • 오수현;이승우;심경아;양형규;원동호
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.3
    • /
    • pp.103-118
    • /
    • 2002
  • To provide the privacy of transmitted message over network the use of cryptographic system is increasing gradually. Because the security and reliability of the cryptographic system is totally rely on the key, the key management is the most important part of the cryptographic system. Although there are a lot of security products providing encryption, the security of the key exchange protocols used in the product are not mostly proved yet. Therefore, we have to study properties and operation of key agreement protocols based on elliptic curve in ANSI X9.63. furthermore, we analyze the security of their protocols under passive and active attacker models and propose the most suitable application field taking the feature of the protocols into account.

Validation Testing Tool for Light-Weight Stream Ciphers (경량 스트림 암호 구현 적합성 검증 도구)

  • Kang Ju-Sung;Shin Hyun Koo;Yi Okyeon;Hong Dowon
    • The KIPS Transactions:PartC
    • /
    • v.12C no.4 s.100
    • /
    • pp.495-502
    • /
    • 2005
  • Cryptographic algorithm testing is performed to ensure that a specific algorithm implementation is implemented correctly and functions correctly. CMVP(Cryptographic Module Validation Program) of NIST in US is the well-known testing system that validates cryptographic modules to Federal Information Processing Standards (FIPS). There is no FIPS-approved stream cipher, and CMVP doesn't involve its validation testing procedure. In this paper we provide validation systems for three currently used light-weight stream ciphers: Bluetooth encryption algorithm E0, 3GPP encryption algorithm A5/3, and RC4 used for WEP and SSL/TLS Protocols. Moreover we describe our validation tools implemented by JAVA programing.