• 제목/요약/키워드: cryogenic insulation

Search Result 176, Processing Time 0.028 seconds

Insulation test of Mini model for the Development of the conduction cooled HTS SMES (전도냉각형 HTS SMES 개발을 위한 미니모델의 절연성능평가)

  • Choi, Jae-Hyeong;Kwag, Dong-Soon;Cheon, Hyeon-Gweon;Kim, Hae-Jong;Seong, Ki-Chul;Kim, Sang-Hyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.9 no.1
    • /
    • pp.32-36
    • /
    • 2007
  • The 600 kJ calss high-temperature superconducting(HTS) SMES(superconducting magnetic energy storage) system is being developed by Korean Electrotechnology Research Institute(KERI). The system is operated in cryogenic temperature and high vacuum condition. The SMES magnet was cooled by conduction cooling method using a Gifford-McMahon cycle cryocooler. Thus the electric insulation design at cryogenic temperature and high vacuum is a key and an important element. Because it accomplish compact design that is a big advantage of HTS SMES. This paper describes the electric insulation design, fabrication and experimental results for a mini model of conduction cooled HTS SMES.

Experimental research about thermal insulation performance of various powder insulation methods (다양한 파우더 충전 단열 방법의 단열 성능에 대한 실험적 연구)

  • Kim, H.S.;Jeong, S.;Jeong, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.49-54
    • /
    • 2010
  • This paper presents apparent thermal conductivity of various powder at different vacuum levels for cryogenic insulation. Four kinds of powder insulator are examined by using boil-off calorimetry at pressure range from 50 Torr to 3 mTorr. The first material is perlite which is widely used in cryogenic application. Microsphere is the second one that is recently proposed as a replacement powder for liquid hydrogen storage tanks. It is a hollow sphere made of silica with the diameter in the order of 10 to $100{\mu}m$. Popped rice and polystyrene beads are also selected as candidates for powder insulation even though they are polymers. With their porous elliptic and spherical configuration and light density, they demonstrate fairly good thermal insulation performance at pressure range from 50 Torr to 3 mTorr. According to the experimental investigation in this paper, microsphere and polystyrene beads possess promising insulation characteristic as powder insulators and further study is desired.

Cryogenic Mechanical Characteristics of Laminated Plywood for LNG Carrier Insulation System (LNG운반선 방열시스템에 적용되는 적층형 플라이우드의 극저온 기계적 특성 분석)

  • Kim, Jeong-Hyeon;Park, Doo-Hwan;Choi, Sung-Woong;Lee, Jae-Myung
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.241-247
    • /
    • 2017
  • Plywood, which is created by bonding an odd number of thin veneers perpendicular to the grain orientation of an adjacent layer, was developed to supplement the weak points such as contraction and expansion of conventional wood materials. With structural merits such as strength, durability, and good absorption against impact loads, plywood has been adopted as a structural material in the insulation system of a membrane type liquefied natural gas (LNG) carrier. In the present study, as an attempt to resolve recent failure problems with plywood in an LNG insulation system, conventional PF (phenolic-formaldehyde) resin plywood and its alternative MUF (melamine-urea-formaldehyde) resin bonded plywood were investigated by performing material bending tests at ambient ($20^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures to understand the resin and grain effects on the mechanical behavior of the plywood. In addition, the failure characteristics of the plywood were investigated with regard to the grain orientation and testing temperature.

Insulation Design and Test of Model Windings for the Development of High Temperature Superconducting Transformer (고온초전도변압기 개발을 위한 모델 권선의 절연 설계 및 평가)

  • Joung, Jong-Man;Baek, Sung-Myeong;Kwak, Dong-Sun;Kim, Sang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.08a
    • /
    • pp.19-22
    • /
    • 2003
  • In the response to increasing the demands for electrical energy, much effort aimed to develop and commercialize 1MVA HTS power equipments that is supported by a grant from center for Applied Superconductivity Technology of the 21st Century Frontier R&D Program funded by the Ministry of Science and Technology is going on in Korea. For the development, the cryogenic insulation and winding insulation of it in this paper are discussed. In the first many types of dielectric insulating tests were carried out. In detail Breakdown characteristics of $LN_2$, FRP and turn insulating films, flashover characteristics along the FRP surface in $LN_2$ were verified after distinguishing insulation components in HIS windings. And then model windings were designed and insulation test was conducted. These included a AC withstand voltage test of 50kV rms and a lightning impulse test of 150kV at peak.

  • PDF

Consistent thermal analysis procedure of LNG storage tank

  • Jeon, Se-Jin;Jin, Byeong-Moo;Kim, Young-Jin;Chung, Chul-Hun
    • Structural Engineering and Mechanics
    • /
    • v.25 no.4
    • /
    • pp.445-466
    • /
    • 2007
  • As the LNG (Liquefied Natural Gas) tank contains cryogenic liquid, realistic thermal analyses are of a primary importance for a successful design. The structural details of the LNG tank are so complicated that some strategies are necessary to reasonably predict its temperature distribution. The proposed heat transfer model can consider the beneficial effects of insulation layers and a suspended deck on temperature distribution of the outer concrete tank against cryogenic conditions simply by the boundary conditions of the outer tank model. To this aim, the equilibrium condition or heat balance in a steady state is utilized in a various way, and some aspects of heat transfer via conduction, convection and radiation are implemented as necessary. Overall thermal analysis procedures for the LNG tank are revisited to examine some unjustifiable assumptions of conventional analyses. Concrete and insulation properties under cryogenic condition and a reasonable conversion procedure of the temperature-induced nonlinear stress into the section forces are discussed. Numerical examples are presented to verify the proposed schemes in predicting the actual temperature and stress distributions of the tank as affected by the cryogenic LNG for the cases of normal operation and leakage from the inner steel tank. It is expected that the proposed schemes enable a designer to readily detect the effects of insulation layers and a suspended deck and, therefore, can be employed as a useful and consistent tool to evaluate the thermal effect in a design stage of an LNG tank as well as in a detailed analysis.

Performance of a 5 L Liquid Hydrogen Storage Vessel (5 L급 액체수소 저장용기의 성능특성 연구)

  • KARNG, SARNG WOO;GARCEAU, NATHANIEL;LIM, CHANG MU;BAIK, JONG HOON;KIM, SEO YOUNG;OH, IN-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.26 no.3
    • /
    • pp.234-240
    • /
    • 2015
  • In the face of the world's growing energy storage needs, liquid hydrogen offers a high energy density solution for the storage and transport of energy throughout society. A 5 L liquid hydrogen storage tank has been designed, fabricated and tested to investigate boil-off rate of liquid hydrogen. As the insulation plays a key role on the cryogenic vessels, various insulation methods have been employed. To reduce heat conduction loss, the epoxy resin-based insulation supports G-10 were used. To minimize radiation heat loss, vapor cooled radiation shield, multi-layer insulation, and high vacuum were adopted. Mass flow meter was used to measure boil-off rate of the 5 L cryogenic vessel. A series of performance tests were done for liquid nitrogen and liquid hydrogen to compare with design parameters, resulting in the boil-off rate of 1.7%/day for liquid nitrogen and 16.8%/day for liquid hydrogen at maximum.

Insulation tests of Continuously Transposed Coated Conductors for a high voltage superconducting transformer (초고압 초전도 변압기용 고온 초전도 연속전위도체의 절연특성)

  • Kim, Y.;Kim, W.S.;Park, S.H.;Park, C.;Lee, S.;Cheon, H.G.;Kim, S.H.;Lee, J.K.;Choi, K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.21-24
    • /
    • 2010
  • A cryogenic insulation technique for a high voltage and a large current capacity of a conductor are now two big issues in a field of recent R&D projects of superconducting power devices, especially a superconducting power transformer. For the large rated currents of the power transformer, it is well known that lots of 2nd generation superconducting conductor, so called coated conductor, should be stacked together with transpositions in order to get an even distributions of the currents. We had come up with an idea of a CTCC (Continuously Transposed Coated Conductor) as a conductor for a large power superconducting transformer, and keep trying to verify the usefulness of the conductor. As one of the efforts of verifying, we prepared and tested a sample CTCC with insulations for high voltage, which includes the epoxy coating and Nomex$^{(R)}$ wrapping. This paper contains the insulation process and dielectric breakdown test results. We expect the results obtained from this experiment to improve an insulation technique for high voltages in various cryogenic environments[1,2].

The Manufacture and Insulating Test of Mini-model for 600kJ Class Conduction Cooled HTS SMES (600kJ급 전도냉각 HTS SMES의 미니모델 제작 및 절연평가)

  • Choi, Jae-Hyeong;Kwag, Dong-Soon;Cheon, Cheon-Gweon;Min, Chi-Hyun;Kim, Hae-Jong;Kim, Sang-Hyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.588-593
    • /
    • 2007
  • The 600kJ class high temperature superconducting magnetic energy storage (HTS SMES) system is being developed by Korean Electrotechnology Research Institute (KERI). The system is operated in cryogenic temperature and high vacuum condition. The SMS magnet was cooled by conduction cooling method using a Gifford-McMahon cycle cryocooler. Thus, electric insulation design at cryogenic temperature and high vacuum is a key and an important element that should be established to accomplish compact design is a big advantage of HTS SMES. This paper describes the electric insulation design, fabrication and experimental results for a mini model of conduction cooled HTS SMES.

Electrical Insulation Characteristics at Cryogenic Temperature for High Temperature Superconducting Cables

  • Okubo, Hitoshi;Hayakawa, Naoki
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • v.4C no.1
    • /
    • pp.15-20
    • /
    • 2004
  • This paper discusses electrical insulation characteristics at cryogenic temperature, especially focusing on partial discharge (PD) inception characteristics, for high temperature superconducting cables. In liquid nitrogen (L$N_2$) / polypropylene (PP) laminated paper composite insulation system, PD inception strength (PDIE) was evaluated in terms of volume effect and V-t characteristics. Different kinds of butt gap condition were applied in the experiments, using parallel plane and coaxial cylindrical cable samples. Experimental results revealed that the volume effect on PDIE could be evaluated by the statistical stressed liquid volume (SSLV) taking account the discharge probability not only in the butt gap but also in the other thin layers between PP laminated papers. Furthermore, the indices n of V-t characteristics at PD inception were estimated to be 80∼110, irrespective of the butt gap condition.

Study on the insulation of HTS bushing at cryogenic temperature

  • Kim, W.J.;Shin, H.S.;Park, T.S.;Kim, S.H.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.20-23
    • /
    • 2013
  • In the development of high temperature superconducting (HTS) power machines, HTS bushing is one of core technologies. In particular, the insulation body with sheds and electrical insulation at cryogenic temperature have attracted a great deal of interest from the view point of the size, weight and efficiency of bushing. In this study, the electrical and mechanical characteristics of various insulators for body in liquid nitrogen ($LN_2$) were investigated. And the surface discharge distance, collar length of GFRP sheds were studied. To emit bubbles between sheds, the shape and arrangement of shed were studied. The shed structure for 60 kV class HTS bushing were designed with regular arrangement.