• Title/Summary/Keyword: cryogenic fluid

Search Result 121, Processing Time 0.024 seconds

Analytical comparison of structural changes of plastic cell-based therapeutic drug storage containers when exposed to cryogenic environments (플라스틱 세포치료제 보관용기의 극저온 환경 노출 시 구조적 변화에 대한 해석적 비교)

  • Park, Jeong-Yeon;Lee, Dong-Mok;Lee, Jienny;Lee, Sun-ray;Yoon, Gil-Sang
    • Design & Manufacturing
    • /
    • v.14 no.2
    • /
    • pp.1-6
    • /
    • 2020
  • Recently, research and commercialization related to the field of cell-based therapeutic drug development has been actively conducted. In order to maintain cell viability and prevent contamination, refrigeration preservation devices, such as CRF (controlled rate freezer) or vapor type LN2 tanks have been developed. On the other hand, the storage container for liquid nitrogen tanks currently on sale minimizes the flow structure to prevent structural defects when stored in a liquid nitrogen tank having a high thermal conductivity than vapor nitrogen. If the cell-based treatment drug is stored in the gaseous LN2 tank as it is, the cell survival after thawing is greatly reduced. It was estimated that the existing storage container structure was a factor that prevented the rapid entry and circulation of gaseous nitrogen into the container. Therefore, this study intends to propose a new supercellular storage container model that can maintain the mechanical strength while maximizing the fluid flow structure. To this end, we estimated that the structural change of the storage container effects on the equivalent stress formed around the through-holes of them when exposed to a cryogenic environment using thermal-structural coupled field analysis. As a result of storage experiments in the gas phase tank of the cell-based therapeutic agent using the developed storage container, it was confirmed that the cell growth rate was improved from 66% to 77%, which satisfied the transportation standards of the FDA(Food and Drug Administration) cell-based therapeutic agent.

A Study of Liquid Nitrogen Inert Gas System for LNGC Diesel Engine Crank Chamber (LNGC 디젤기관 크랭크 챔버용 액체질소 불활성가스 시스템에 관한 연구)

  • Choi, Bu-Hong;Kim, Hyun-Soo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.3
    • /
    • pp.279-285
    • /
    • 2012
  • It is necessary to install the inert gas system(IGS) for preventing fire and explosion in LNGC main diesel engine crankcase besides oil mist detector(OMD) unit with $CO_2$ gas injector. Therefore, to design the liquid nitrogen IGS, analytical work is conducted for predicting the heat input load of liquid nitrogen heater with two-phase stratified flow model. This paper also presents the effects of changes in pipe diameter, saturated pressure, and inclination angle by ship's movement on cryogenic two-phase stratified flows. It is found that the stratified model gives reasonable predictions, and the model is effective to predict the heat input load of liquid nitrogen IGS.

A Study on the Chattering under Cryogenic Flow Test of a Oxidizer Shutoff Valve (산화제 개폐밸브의 극저온 유동시험에서 채터링의 고찰)

  • Lee, JoongYoup;Han, SangYeop;Lee, SooYong
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.108-117
    • /
    • 2013
  • The oxidizer shutoff valve of a gas generator controls the mass flow rate of the propellant of a rocket engine using pilot pressure and spring the force of the valve. The developing oxidizer shutoff valve can be shut off if the pilot pressure is removed from the actuator. Therefore, force balancing is necessary to analyze the characteristics of the forces with respect to the opening and closing of the valve in order to evaluate its performance. In light of this, the valve has been designed to adjust the control pressure required to open the poppet and to determine the working fluid pressure at which the valve starts to close. Under cryogenic flow test as a tests level of C.R.T(Control Random Test), the chattering phenomena occurred due to much leakage of a metal seat section. The pressure for chattering of the oxidizer valve is predicted at about 11 bar using force balancing analysis.

Development Study on the Prototype of Level Measurement System of Launch Vehicle Propellant Tanks (추진제 충전량 측정시스템 시제 개발 연구)

  • Shin, Dong-Sun;Han, Sang-Yeop;Cho, In-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.590-593
    • /
    • 2010
  • The processes of supplying propellants into propellant tanks play important roles during launch preparation of satellite launch vehicle. The total weight of launch vehicle greatly depends on the accuracy of filling quantity of propellant during launch preparation. Among propellants used for launch vehicles a cryogenic propellant such as liquid oxygen is widely adapted as an oxidizer for launch vehicles. Such cryogenic propellant usually resides in a propellant tank as two-phase fluid with liquid and gas, which needs an accurate level measurement system to detect the position of propellant surface precisely. In this paper the fabricating process of a level measurement system using capacitance type with three electrodes is analyzed. In addition, the change of electric signal according to the height of liquid is verified by testing the level measurement system under consideration. The results of tests shows as expected the linear trend of voltage according to the change of water height in a tank.

  • PDF

Experimental Research of Characteristic of Pool Boiling Heat Transfer of Saturated Liquid Nitrogen with Helical Coil Type Heat Exchanger (나선형 튜브 열교환 방식의 포화 상태 액체질소의 비등열전달 특성에 대한 실험적 연구)

  • Seo, Mansu;Lee, Jisung;Kim, Junghan;Kang, Sunil
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.3
    • /
    • pp.59-70
    • /
    • 2020
  • Obtaining external forced convection heat transfer from bubble boiling and validating it with experimental results using cryogenic liquids are suggested to derive total heat transfer coefficient with pool boiling condition in the case of coil type heat exchanger with a bundle of tubes and to overcome the limitation of using the empirical correlation. Experiment is conducted with pool boiling heat transfer of saturate liquid nitrogen with helical coil type heat exchanger using liquid oxygen as hot stream fluid. Experimentally measured heat transfer coefficient is well-agreed with the estimated curve considering nucleate boiling and forced convection induced by bubble rise.

Evaporation Heat Transfer Characteristics of Liquid Nitrogen in Horizontal Plain Tubes with Wire Coil Inserts (평활관 및 열전달촉진관에서 액체질소의 관내 증발열전달 특성에 대한 연구)

  • Hwang, Jee-Sang;Chung, Jin-Taek;Yun, Rin;Kim, Yong-Chan;Moon, Young-June;Kim, Dong-Hyuk
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.1359-1364
    • /
    • 2004
  • An experiment was performed to study the evaporation heat transfer and the pressure drop characteristics of liquid nitrogen in a horizontal stainless steel tube with wire coil inserts. The inner diameter of test tube is 4.3mm and the length is 1.5m. Four wire coils having different pitch and thickness were inserted into the plain test tube. The wire coil length is 1.5m and the diameter is 3.65mm with thickness of 0.5mm and 0.9mm. Experiments were conducted at saturation temperature of $-191^{\circ}C$ mass flux from 200 to 370 $kg/m^{2}s$ and heat flux of 62 $kW/m^{2}$. Direct heating method was used to apply heat to the test section. Boiling heat transfer coefficients of both the plain and the enhanced tubes were calculated. Pressure drops between inlet and outlet side of test section were also measured, and they are used to estimate EPR(Enhancement Performance Ratio).

  • PDF

Flow Boiling Heat Transfer Characteristics of Liquid Nitrogen in Plain and Wire Coil Inserted Tubes (평활관 및 와이어코일을 삽입한 열전달촉진관에서 액체질소의 흐름비등열전달 특성)

  • Hwang Jee-Sang;Yun Rin;Kim Yongchan;Chung Jin Taek
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.8 s.239
    • /
    • pp.927-933
    • /
    • 2005
  • Boiling heat transfer characteristics of liquid nitrogen in a stainless steel plain tube and wire coil inserted tubes were investigated. The test tubes, which had an inner diameter of 10.6 m and a length of 1.65 m, were horizontally located. Five wire coils having different pitch and thickness were inserted into the plain tube. The pitches of the wire coils were 18.4, 27.6, and 36.8 m, and the thickness was 1.5, 2.0, and 2.5 mm respectively. Tests were conducted at a saturation temperature of $-191^{\circ}$, mass fluxes from 58 to 105 kg/$m^2s$, and heat fluxes from 22.5 to 32.7 kw/$m^2$. A direct heating method was used to apply heat to the test section. The boiling heat transfer coefficients of liquid nitrogen were represented as a function of vapor quality, which showed significant drop at the dryout vapor quality. The maximum heat transfer enhancement using the wire coil inserted tubes over the plain tube was $174\%$ for 'Wire 3' having a thickness of 2.5 mm and a pitch of 18.4 mm.

Effects of Working Fluids on the Performance Characteristics of Organic Rankine Cycle (ORC) Using LNG Cold Energy as Heat Sink (LNG 냉열을 열싱크로 이용하는 유기랭킨사이클(ORC)의 작동유체에 따른 성능 특성)

  • Kim, Kyoung Hoon;Ha, Jong Man;Kim, Kyung Chun
    • Journal of Hydrogen and New Energy
    • /
    • v.25 no.2
    • /
    • pp.200-208
    • /
    • 2014
  • This paper presents thermodynamic performance analysis of organic Rankine cycle (ORC) using low temperature heat source in the form of sensible energy and using liquefied natural gas (LNG) as heat sink to recover the cryogenic energy of LNG. LNG is able to condense the working fluid at a very low condensing temperature in a heat exchanger, which leads to an increased power output. Based on the mathematical model, a parametric analysis is conducted to examine the effects of eight different working fluids, the turbine inlet pressure and the condensation temperature on the system performance. The results indicate that the thermodynamic performance of ORC such as net work production or thermal efficiency can be significantly improved by the LNG cold energy.

Magnetic refrigerator for hydrogen liquefaction

  • Numazawa, T.;Kamiya, K.;Utaki, T.;Matsumoto, K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.2
    • /
    • pp.1-8
    • /
    • 2013
  • This paper reviews the development status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. Liquid hydrogen is in cryogenic temperatures and therefore high efficient liquefaction method must be studied. Magnetic refrigeration which uses the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency > 50 %, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system > 80 % liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 second of the cycle. By using the simulation, we estimate the total efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained in the magnetic refrigeration system operation temperature between 20 K and 77 K including LN2 work input.

Transient cooling experiments with a cooper block in a subcooled flow boiling system (과냉비등류에 있어서 동블록을 이용한 과도적 냉각실험)

  • 정대인;김경근;김명환
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.72-79
    • /
    • 1987
  • When the wall temperature is very high, a stable vapor film covers the heat transfer surface. The vapor film creates a strong thermal resistance when heat is transferred to the liquid though it. This phenomenon, called "film boiling" is very important in the heat treatment of metals, the design of cryogenic heat exchangers, and the emergency cooling of nuclear reactors. In the practical engineering problems of the transient cooling process of a high temperature wall, the wall temperature history, the variation of the heat transfer coefficients, and the wall superheat at the rewetting points, are the main areas of concern. These three areas are influenced in a complex fashion such factors as the initial wall temperature, the physical properties of both the wall and the coolant, the fluid temperature, and the flow state. Therefore many kinds of specialized experiments are necessary in the creation of precise thermal design. The object of this study is to investigate the heat transfer characteristics in the transient cooling process of a high temperature wall. The slow transient cooling experiment was carried out with a copper block of high thermal capacity. The block was 240 mm high and 79 mm O.D.. The coolant flowed throuogh the center of a 10 mm diameter channel in the copper block. In the copper block, three sheathed thermocouples were placed in a line perpendicular to the flow. These thermocouples were used to take measurements of the temperature histories of the copper block.

  • PDF