References
- V. A. Prisyazhniuk, "Alternative trends in development of thermal power plant", Applied Thermal Engineering, Vol. 28, 2008, pp. 190-194. https://doi.org/10.1016/j.applthermaleng.2007.03.025
- K. H. Kim, C. H. Han, K. Kim, "Effects of ammonia concentration on the thermodynamic performances of ammonia-water based power cycles", Thermochimica Acta, Vol. 530, No. 20, 2012, pp. 7-16. https://doi.org/10.1016/j.tca.2011.11.028
- K. H. Kim, H. J. Ko, K. Kim, "Assessment of pinch point characteristics in heat exchangers and condensers of ammonia-water based power cycles", Applied Energy, Vol. 113, 2014, pp. 970-981. https://doi.org/10.1016/j.apenergy.2013.08.055
- T. C. Hung, S. K. Wang, C. H. Kuo, B. S. Pei, K. F. Tsai, "A study of organic working fluids on system efficiency of an ORC using low-grade energy sources," Energy, Vol. 35, 2010, pp. 1403-1411. https://doi.org/10.1016/j.energy.2009.11.025
- N. A. Lai, M. Wendland, J. Fisher J, "Working fluids for high temperature organic Rankine cycle," Energy, Vol. 36, 2011, pp. 199-211. https://doi.org/10.1016/j.energy.2010.10.051
- Y. Dai, J. Wang, L. Gao, "Parametric optimization and comparative study of organic Rankine cycle (ORC) for low grade waste heat recovery," Energy Convs. Mgmt., Vol. 50, 2009, pp. 576-582. https://doi.org/10.1016/j.enconman.2008.10.018
- A. Delgadotorres, L. Garciarodriguez, "Double cascade organic Rankine cycle for solar-driven reverse osmosis desalination", Desalination, Vol. 216, 2007, pp. 306-313. https://doi.org/10.1016/j.desal.2006.12.017
- B. F. Tchanche, G. Papadakis, A. Frangoudakis, "Fluid selection for a low-temperature solar organic Rankine cycle", App. Therm. Eng., Vol. 29, 2009, pp. 2468-2476. https://doi.org/10.1016/j.applthermaleng.2008.12.025
- K. H. Kim, C. H. Han, "Analysis of transcritical organic Rankine cycles for low-grade heat conversion," Adv. Sci. Lett., Vol. 8, 2012, pp. 216-221. https://doi.org/10.1166/asl.2012.2404
- S. Kumar, H. T. Kwon, K. H. Choi, W. S. Lim, J. H. Cho, K. J. Tak, I. Moon, "LNG: An ecofriendly cryogenic fuel for sustainable development," Applied Energy, Vol. 88, 2011, pp. 4264-4273. https://doi.org/10.1016/j.apenergy.2011.06.035
- T. Miyazaki, Y. T. Kang, A. Akisawa, T. Kashiwagi, "A combined power cycle using refuse incineration and LNG cold energy", Energy, Vol. 25, 2000, pp. 639-655. https://doi.org/10.1016/S0360-5442(00)00002-5
- K. I. Choi, H. M. Chang, "Thermodynamic analysis of power generation cycle utilizing LNG cold energy", Superconductivity and Cryogenics, Vol. 1, No. 1, 1999, pp. 48-55.
- G. Bisio, L. Tagliafico, "On the recovery of LNG physical exergy by means of a simple cycle or a complex system", Exergy, Vol. 2, 2002, pp. 34-50. https://doi.org/10.1016/S1164-0235(01)00037-1
- Q. Wang, Y. Z. Li, J. Wang, "Analysis of power cycle based on cold energy of liquefied natural gas and low-grade heat source", Applied Thermal Engineering, Vol. 24, 2004, pp. 539-548. https://doi.org/10.1016/j.applthermaleng.2003.09.010
- G. S. Lee, "Design and exergy analysis for a combined cycle using LNG cold/hot energy", Korean Journal of Air-conditioning and Refrige-ration engineering, Vol. 17, No. 4, 2005, pp. 285-296.
- X. Shi, X. Che, "A combined power cycle utilizing low-temperature waste heat and LNG cold energy", Energy, Vol. 50, 2009, pp. 567-575.
- J. Wang, Z. Yan, M. Wang, "Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink", Energy Vol. 50, 2013, pp. 13-522.
- T. Yang, G. J. Chen, T. M. Guo, "Extension of the Wong-Sandler mixing rule to the three-parameter Patel-Teja equation of state: Application up to the near-critical region", Chem. Eng. J, Vol. 67, 1997, pp. 27-36. https://doi.org/10.1016/S1385-8947(97)00012-0