• 제목/요약/키워드: cryo-EM

검색결과 23건 처리시간 0.025초

다양한 유리화 동결 방법이 각 시간대별 생쥐 전핵기 배아의 발달에 미치는 영향 (The Effect of Various Vitrification Methods on Developmental Rate of Mouse Pronuclear Embryos at Different Recovery Times)

  • 김지철;서병부;박성백;김재명
    • 한국수정란이식학회지
    • /
    • 제27권1호
    • /
    • pp.63-69
    • /
    • 2012
  • The objective of this study was to investigate the effectiveness of cryopreservation methods for the effect of various vitrification containers, such as EM-grid, OPS, or cryo-loop on the survival and developmental rate of vitrified mouse pronuclear embryos, and mouse cleavage embryo, at 21, 24, 27 and 30 hr after hCG injection. Post-thaw cleavage was similar among treatments, while the developmental rates of mouse blastocyst and hatched blastocyst were higher ($p$ <0.05) in 27 hr and 30 hr than 21 hr. The developmental rate of hatched blastocyst at vitrified cleavage mouse embryos in cryo-loop was significantly higher than vitrified pronuclear embryos of control group as well as EM-grid and OPS ($p$ <0.05). The developmental rate using cryo-loop was higher than EM-grid, but in case of OPS at vitrified cleavage and mouse pronuclear embryos, no significant difference was noticed. These results of our study show that the developmental rates of mouse embryos were unaffected by various vitrification containers, but in case of mouse embryos and hatched blastocysts at late vitrified pronuclear embryos the developmental rates were higher than early vitrified pronuclear embryos. Moreover, the developmental rate of hatched blastocyst at vitrified cleavage mouse embryos was significantly higher than vitrified pronuclear embryos. For better execution of this study, it will be mandatory to include improvement of vitrification containers, cryopreservation methods and conditions, higher survival rate, safe preservation, contamination and embryo loss.

다양한 Container로 유리화 동결된 체외생산 소 수정란의 발달에 관한 연구 (Development of In Vitro Produced Bovine Embryos after Vitrification with Various Containers)

  • Lee, Y.J.;Ko, D.H.;H.T., Lee;Chung, K.S.
    • 한국가축번식학회지
    • /
    • 제25권4호
    • /
    • pp.371-379
    • /
    • 2001
  • 본 연구는 체외에서 생산된 소 수정란의 동결을 위한 최적치 조건을 규명할 목적으로 실시하였다. 동결을 위하여 체외에서 생산된 8 세포기, 상실배기 및 비반포기 단계의 수정란을 공시하여 EC 5.5 동결온액에 20초 동안 노출시키고, 각 용기에 장착한 후, 즉시 -196$^{\circ}C$ 액체질소에 침지하는 유리화동결법을 채택하였다. 그 후 0.5 M, 0.25 M 및 0.121 M sucrose 용액에서 각 1분간씩, 연속으로 응해 한 다음, 10 % FBS가 첨가된 CR Iaa 배양액으로 옮겨 배양하였다. 그 결과 수정란의 재팽창률과 완전부화율은 EM grid, OPS 및 Cryo-loop 등과 같은 동결용기에 의해 큰 차이를 보이지 않았다. 또 Hoechst 염색에 의해 조사한 동결융해 후 체외에서 발달된 완전팽창 배반포의 총세포수에 있어서도, 대조군 (180.0 $\pm$ 5.4)과 동결군 (178.0 $\pm$ 7.5) 사이에 차이가 없었고, 동결융해 후 세포의 손상을 이중염색법으로 조사한 생존세포와 사멸세포의 비율도 대조군 (176 : 4)과 동결군 (172 : 6) 사이에 유의차가 인정되지 않았다. 이러한 결과로 보아 소 수정란은 EG 5.5 동결용액과 EM grid, OPS 또는 Cryo-loop과 같은 동결용기에 의해 성공적으로 동결보존할 수 있는 것으로 판단된다.

  • PDF

초저온 전자현미경법을 통한 고분해능 생물분자 구조분석 (High resolution structural analysis of biomolecules using cryo-electron microscopy)

  • 현재경
    • 진공이야기
    • /
    • 제4권4호
    • /
    • pp.18-22
    • /
    • 2017
  • Transmission electron microscopy (TEM) is a versatile and powerful technique that enables direct visualization of biological samples of sizes ranging from whole cell to near-atomic resolution details of a protein molecule. Thanks to numerous technical breakthroughs and monumental discoveries, 3D electron microscopy (3DEM) has become an indispensable tool in the field of structural biology. In particular, development of cryo-electron microscopy(cryo-EM) and computational image processing played pivotal role for the determination of 3D structures of complex biological systems at sub-molecular resolution. Here, basis of TEM and 3DEM will be introduced, especially focusing on technical advancements and practical applications. Also, future prospective of constantly evolving 3DEM field will be discussed, with an anticipation of great biological discoveries that were once considered impossible.

Some living eukaryotes during and after scanning electron microscopy

  • Ki Woo Kim
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.16.1-16.7
    • /
    • 2021
  • Electron microscopy (EM) is an essential imaging method in biological sciences. Since biological specimens are exposed to radiation and vacuum conditions during EM observations, they die due to chemical bond breakage and desiccation. However, some organisms belonging to the taxa of bacteria, fungi, plants, and animals (including beetles, ticks, and tardigrades) have been reported to survive hostile scanning EM (SEM) conditions since the onset of EM. The surviving organisms were observed (i) without chemical fixation, (ii) after mounting to a precooled cold stage, (iii) using cryo-SEM, or (iv) after coating with a thin polymer layer, respectively. Combined use of these techniques may provide a better condition for preservation and live imaging of multicellular organisms for a long time beyond live-cell EM.

생쥐 난자의 효율적인 냉동보존 방법 확립을 위한 연구 (Development of Effective Cryopreservation Method for Mouse Oocytes)

  • 최수진;김수경;김지선;조재원;전진현;변혜경
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제31권1호
    • /
    • pp.75-81
    • /
    • 2004
  • Objective: The purpose of this study was to evaluate the efficacy and effect of various cryopreservation method on the survival and the cytoskeletal stability of metaphase II mouse oocyte. Methods: Mouse ovulated oocytes were collected and cryopreserved by a modified slow-freezing method with 1.5 M 1, 2-propanediol (PrOH)+0.1 M sucrose or by vitrification using cryo loop and EM grid with 40% ethylene glycol+0.6 M sucrose. Four hours after thawing, intact oocytes were fixed and stained with fluorescein isothiocyanate (FITC)-conjugated monoclonal anti-$\beta$-tubulin antibody to visualize spindle and propidium iodide (PI) to visualize chromosome. Spindle morphology was classified as follows: normal (barrel-shaped), slightly and absolute abnormal (multipolar or absent). Results: Survival rate of the frozen-thawed oocytes in vitrification group was significantly higher than that of slow-freezing group (62.7% vs. 24.4%, p<0.01). Vitrification with cryo loop showed significantly higher survival rate than that with EM grid (67.7% vs. 53.5%, p<0.05). On the other hand, proportion of normal spindle and chromosome configurations of the frozen-thawed oocytes between two vitrification group was not significantly different. Conclusion: For mouse ovulated oocytes, vitrification with cryo loop may be a preferable procedure compared to slow-freezing method. Further study should be needed to investigate developmental competency of frozen-thawed mouse oocytes.

Expression and Localization of Heat Shock Protein 70 in Frozen-thawed IVF and Nuclear Transferred Bovine Embryos

  • Chung, K.S.;Choi, Y.J.;Song, S.J.;Do, J.T.;Yoon, B.S.;Kim, Y.J.;Lee, H.T.
    • 한국가축번식학회지
    • /
    • 제26권4호
    • /
    • pp.311-320
    • /
    • 2002
  • The objective of this study was to assess the developmental potential in vitro produced embryos frozen-thawed with the various containers, and also examined expression and localization of heat shock protein 70 at these embryos. For the vitrification, 2-cell, 8-cell and blastocyst stage embryos produced by in vitro fertilization (IVF) and nuclear transfer (NT) were exposed the ethylene glycol 5.5 M freezing solution (EC 5.5) for 30 sec, loaded on each containers such EM grid, straw and cryo-loop, and then immediately plunged into liquid nitrogen. Thawed embryos were serially diluted in sucrose solution, each for 1 min. and cultured in CRI-aa medium. Survival rates of the vitrification production were assessed by re-expanded, hatched blastocysts. There were no differences in the survival rates of IVF using EM grid and cryo-loop. However, survival rates by straw were relatively lower than other containers. The use of cryo-loop resulted in only survival of nuclear transferred embryos (43.7%). Also, there embryos after IVF or NT were analysed by semi-quantitive reverse transcription-polymerase chain reaction (RT- PCR) methods for hsp 70 mRNA expression. Results revealed the expression of hsp 70 mRNh were higher thawed embryos than control embryos. Immunocytochemistry used to localize the hsp 70 protein in embryos. Two and 8-cell embryos derived under control condition was evenly distributed in the cytoplasm but appeared as aggregates in some frozen-thawed embryos. However, in the control, blastocysts displayed aggregate signal while Hsp70 in frozen-thawed blastocysts appeared to be more uniform In distribution. Therefore, this result suggests that the exploiting Hsp 70 in the early embryos may be role for protection of stress condition for increase viability of embryos within IVF, NT and there frozen-thawed embryos.

인간 배아 줄기세포의 OPS와 Grid를 이용한 유리화 동결법의 효율성 비교 (Modification of Efficient Vitrification Method by Using Open Pulled Straw (OPS) and EM Grid as Vehicles in Human Embryonic Stem Cell)

  • 박규형;최성준;김희선;오선경;문신용;차광렬;정형민
    • 한국수정란이식학회지
    • /
    • 제18권3호
    • /
    • pp.179-186
    • /
    • 2003
  • Human embryonic stem (hES) cell lines have been derived from human blastocysts and are expected to have far-reaching applications in regenerative medicine. The objective of this study is to improve freezing method with less cryo-injuries and best survival rates in hES cells by comparing various vitrification conditions. For the vitrifications, ES cells are exposed to the 4 different cryoprotectants, ethylene glycol (EG), 1,2-propanediol (PROH), EG with dime-thylsulfoxide (DMSO) and EG with PROH. We compared to types of vehicles, such as open pulled straw (OPS) or electron microscopic cooper grids (EM grids). Thawed hES cells were dipped into sequentially holding media with 0.2 M sucrose for 1 min, 0.1 M sucrose for 5 min and holding media for 5 min twice and plated onto a fresh feeder layer. Survival rates of vitrified hES cells were assessed by counting of undifferentiated colonies. It shows high survival rates of hES cells frozen with EG and DMSO (60.8%), or EG and PROH(65.8%) on EM grids better than those of OPS, compared to those frozen with EG alone (2.4%) or PROH alone (0%) alone. The hES cells vitrified with EM grid showed relatively constant colony forming efficiency and survival rates, compared to those of unverified hES cells. The vitrified hES cells retained the normal morphology, alkaline phosphates activity, and the expression of SSEA-3 and 4. Through RT-PCR analysis showed Oct-4 gene expression was down-regulated and embryonic germ layer markers were up-regulated in the vitrified hES cells during spontaneous differentiation. These results show that vitrification method by using EM grid supplemented with EG and PROH in hES cells may be most efficient at present to minimize cyto-toxicity and cellular damage derived by ice crystal formation and furthermore may be employed for clinical application.

Expression and Localization of Heat Shock Protein 70 in Frozen-Thawed IVF and Nuclear Transfrred Bovine Embryos

  • Park, Y.J;S.J Song;J.T Do;B.S Yoon;Kim, A.J;K.S Chung;Lee, H.T
    • 한국수정란이식학회:학술대회논문집
    • /
    • 한국수정란이식학회 2002년도 국제심포지엄
    • /
    • pp.78-78
    • /
    • 2002
  • The role of heat shock proteins in shielding organism from environmental stress is illustrated by the large-scale synthesis of these protein by the organism studied to date. However, recent evidence also suggests an important role for heat shock protein in fertilization and early development of mammalian embryos. Effects of elevated in vitro temperature on in vitro produced bovine embryos were analysed in order to determine its impact on the expression of heat shock protein 70 (HSP70) by control and frozen-thawed after in vitro fertilization (IVF) or nuclear transfer (NT). The objective of this study was to assess the developmental potential in vitro produced embryos with using of the various containers and examined expression and localization of heat shock protein 70 after it's frozen -thawed. For the vitrification, in vitro produced embryos at 2 cell, 8 cell and blastocysts stage after IVF and NT were exposed the ethylene glycol 5.5 M freezing solution (EG 5.5) for 30 sec, loaded on each containers such EM grid, straw and cryo-loop and then immediately plunged into liquid nitrogen. Thawed embryos were serially diluted in sucrose solution, each for 1 min, and cultured in CRI-aa medium. Survival rates of the vitrification production were assessed by re-expanded, hatched blastocysts. There were no differences in the survival rates of IVF using EM grid, cryo-loop. However, survival rates by straw were relatively lower than other containers. Only, nuclear transferred embryos survived by using cryo-loop. After IVF or NT, in vitro matured bovine embryos 2 cell, 8 cell and blastocysts subjected to control and thawed conditions were analysed by semiquantitive reverse transcription polymerase chain reaction methods for hsp 70 mRNA expression. Results revealed the expression of hsp 70 mRNA were higher thawed embryos than control embryos. Immunocytochemistry used to localization the hsp70 protein in embryos. Two, 8-cell embryos derived under control condition was evenly distributed in the cytoplasm but appeared as aggregates in some embryos exposed frozen-thawed. However, under control condition, blastocysts displayed aggregate signal while Hsp70 in frozen-thawed blastocysts appeared to be more uniform in distribution.

  • PDF

Structural Insights into Porphyrin Recognition by the Human ATP-Binding Cassette Transporter ABCB6

  • Kim, Songwon;Lee, Sang Soo;Park, Jun Gyou;Kim, Ji Won;Ju, Seulgi;Choi, Seung Hun;Kim, Subin;Kim, Na Jin;Hong, Semi;Kang, Jin Young;Jin, Mi Sun
    • Molecules and Cells
    • /
    • 제45권8호
    • /
    • pp.575-587
    • /
    • 2022
  • Human ABCB6 is an ATP-binding cassette transporter that regulates heme biosynthesis by translocating various porphyrins from the cytoplasm into the mitochondria. Here we report the cryo-electron microscopy (cryo-EM) structures of human ABCB6 with its substrates, coproporphyrin III (CPIII) and hemin, at 3.5 and 3.7 Å resolution, respectively. Metal-free porphyrin CPIII binds to ABCB6 within the central cavity, where its propionic acids form hydrogen bonds with the highly conserved Y550. The resulting structure has an overall fold similar to the inward-facing apo structure, but the two nucleotide-binding domains (NBDs) are slightly closer to each other. In contrast, when ABCB6 binds a metal-centered porphyrin hemin in complex with two glutathione molecules (1 hemin: 2 glutathione), the two NBDs end up much closer together, aligning them to bind and hydrolyze ATP more efficiently. In our structures, a glycine-rich and highly flexible "bulge" loop on TM helix 7 undergoes significant conformational changes associated with substrate binding. Our findings suggest that ABCB6 utilizes at least two distinct mechanisms to fine-tune substrate specificity and transport efficiency.

Comparative Analysis of T4SS Molecular Architectures

  • Mishghan Zehra;Jiwon Heo;Jeong Min Chung;Clarissa L Durie
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1543-1551
    • /
    • 2023
  • The recently published high-resolution R388 T4SS structure provides exciting new details about the complete complex of T4SS, including the components making up the stalk and arches, numerous symmetry mismatches between regions of the complex, and an intriguing interpretation of the closed stalk and radial symmetry of the inner membrane complex, which is related to pilus biogenesis assembly. However, there are a few unidentified densities in the electron microscopy map and portions of the identified component sequences for which the structure is not yet known. It is also unclear how well this minimized DNA-transporting T4SS predicts the structure of other T4SSs, such as expanded systems and those that transport proteins rather than DNA. In this review, we evaluate what can be inferred from the recent high-resolution structure of the R388 T4SS with respect to the Cag and Dot/Icm systems. These systems were selected because, given what is currently known about these systems, we expect them to present most structural differences compared to the R388 T4SS structure. Furthermore, we discuss bacterial physiology and diversity, the T4SS structures and their variations between different bacterial species. These insights may prove beneficial for researchers who elucidate the structure and functions of T4SS in different bacterial species.