• Title/Summary/Keyword: cruise control system

Search Result 163, Processing Time 0.032 seconds

Autonomous Intelligent Cruise Control Using the Adaptive Fuzzy Control (퍼지 적응제어를 이용한 차량간격 제어 알고리즘에 관한 연구)

  • 장광수;최재성
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.4 no.6
    • /
    • pp.175-186
    • /
    • 1996
  • In Advanced Vehicle Control System(AVCS), Autonomous Intelligent Cruise Control(AICC) is generally understood to be a system that can be achieved in the near future without the demanding infrastructure components and technoloties. AICC is an automatic vehicle following system with no human engagement in the longitudinal vehicle direction. This paper presents a fuzzy control algorithm to develop the AICC system. The control performance was studied information of vehicles using computer simulations. The most improtant aspects of the work reported here are the adoption of the fuzzy adaptive control law, and the use of filtering concept to reduce the slinky effects that may appear in a formation of vehicles equipped with AICC systems. The simulation results demonstrate the effectiveness of the fuzzy adaptive AICC system and its beneficial effects on traffic flow.

  • PDF

A Real-time Multibody Vehicle Dynamics and Control Model for a Virtual Reality Intelligent Vehicle Simulator (가상현실 지능형 차량 시뮬레이터를 위한 실시간 다물체 차량 동역학 및 제어모델)

  • 김성수;손병석;송금정;정상윤
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.4
    • /
    • pp.173-179
    • /
    • 2003
  • In this paper, a real-time multibody vehicle dynamics and control model has been developed for a virtual reality intelligent vehicle simulator. The simulator consists of low PCs for a virtual reality visualization system, vehicle dynamics and control analysis system a control loading system, and a network monitoring system. Virtual environment is created by 3D Studio Max graphic tool and OpenGVS real-time rendering library. A real-time vehicle dynamics and control model consists of a control module based on the sliding mode control for adaptive cruise control and a real-time multibody vehicle dynamics module based on the subsystem synthesis method. To verify the real-time capability of the model, cut-in, cut-out simulations have been carried out.

A Study on Mode Confusions in Adaptive Cruise Control Systems (적응 순항 제어 시스템에서의 모드 혼동에 관한 연구)

  • Ahn, Dae Ryong;Yang, Ji Hyun;Lee, Sang Hun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.473-482
    • /
    • 2015
  • Recent development in science and technology has enabled vehicles to be equipped with advanced autonomous functions. ADAS (Advanced Driver Assistance Systems) are examples of such advanced autonomous systems added. Advanced systems have several operational modes and it has been observed that drivers could be unaware of the mode they are in during vehicle operation, which can be a contributing factor of traffic accidents. In this study, possible mode confusions in a simulated environment when vehicles are equipped with an adaptive cruise control system were investigated. The mental model of the system was designed and verified using the formal analysis method. Then, the user interface was designed on the basis of those of the current cruise control systems. A set of human-in-loop experiments was conducted to observe possible mode confusions and redesign the user interface to reduce them. In conclusion, the clarity and transparency of the user interface was proved to be as important as the correctness and compactness of the mental model when reducing mode confusions.

DRIVER BEHAVIOR WITH ADAPTIVE CRUISE CONTROL

  • Cho, J.H.;Nam, H.K.;Lee, W.S.
    • International Journal of Automotive Technology
    • /
    • v.7 no.5
    • /
    • pp.603-608
    • /
    • 2006
  • As an important and relatively easy to implement technology for realizing Intelligent Transportation Systems(ITS), Adaptive Cruise Control(ACC) automatically adjusts vehicle speed and distance to a preceding vehicle, thus enhancing driver comfort and safety. One of the key issues associated with ACC development is usability and user acceptance. Control parameters in ACC should be optimized in such a way that the system does not conflict with driving behavior of the driver and further that the driver feels comfortable with ACC. A driving simulator is a comprehensive research tool that can be applied to various human factor studies and vehicle system development in a safe and controlled environment. This study investigated driving behavior with ACC for drivers with different driving styles using the driving simulator. The ACC simulation system was implemented on the simulator and its performance was evaluated first. The Driving Style Questionnaire(DSQ) was used to classify the driving styles of the drivers in the simulator experiment. The experiment results show that, when driving with ACC, preferred headway-time was 1.5 seconds regardless of the driving styles, implying consistency in driving speed and safe distance. However, the lane keeping ability reduced, showing the larger deviation in vehicle lateral position and larger head and eye movement. It is suggested that integration of ACC and lateral control can enhance driver safety and comfort even further.

A study on autonomous steering and Cruise speed control using Fuzzy Algorithm

  • Kim, Dae-Hyun;Kim, Hyo-Jae;Lee, Young-Su;Lee, Sang-Min;Lim, Young-Do
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.539-542
    • /
    • 2005
  • This paper contains studies which are Cruise speed control which is made by PID algorithm and automated steering system for avoiding the obstacle coming from the front which is using Fuzzy algorithm. This mobile car uses DC motor whose speed is detected by encoder. Ultrasonic Waves Sensor established in the front detects the obstacle and the curve. And the sensor established in the side detects the distance of the space of the road. If the sensor detects the obstacle or the curve, the car is controlled by using Fuzzy algorithm. The Fuzzy algorithm calculates the speed and steering angle by using the value which is obtained from sensor.

  • PDF

Hardware-in-the-Loop Simulation of a Vehicle-to-Vehicle Distance Control System (차간거리제어 Hardware-in-the-Loop 시뮬레이션)

  • Moon, Il-Ki;Lee, Chan-Kyu;Yi, Kyong-Su;Kwon, Young-Do
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.741-746
    • /
    • 2001
  • This paper presents an investigation of a vehicle-to-vehicle distance control using a Hardware-in-the-Loop Simulation(HiLS) system. Since vehicle tests are costly and time consuming, how to establish a efficient and low cost development tool is an important issue. The HiLS system consists of a stepper motor, an electronic vacuum booster, a controller unit and two computers which are used to form real time simulation and to save vehicle parameters and signals of actuator through a CAN(Controller Area Network). Adoption of a CAN for communication is a trend in the automotive industry. Since this environment is the same as that of a real vehicle, a distance control logic verified in laboratory can be easily transfered to a test vehicle.

  • PDF

Handling Qualities Evaluation of Flight Control System for Lift-Cruise type eVTOL Aircraft (Lift-Cruise형 eVTOL 항공기 제어시스템 조종성 평가 연구)

  • Sungtak Oh;Jeonghun Shin;Jinwoo Lee;Dongjin Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.5
    • /
    • pp.686-697
    • /
    • 2024
  • To ensure stable urban flight of electric vertical take-off and landing(eVTOL) aircraft, securing handling qualities and stability is essential. However, clear handling qualities standards for eVTOL aircraft, which have different characteristics from conventional manned aircraft, have not yet been established. Therefore, this paper identifies handling qualities evaluation criteria suitable for eVTOL aircraft based on the handling qualities standards for manned aircraft and designs a control system that meets the predicted handling qualities criteria through evaluation. simplified vehicle operation(SVO) control laws and stability and control augmentation system(SCAS)-based control laws were applied to the lift-cruise configuration eVTOL aircraft. Using control designer's unified interface(CONDUIT), it was confirmed that the level 1 standard was met, and to validate the system, assigned handling qualities evaluation was performed using handling qualities task elements(HQTE) in an X-Plane based simulation environment, resulting in the design of a control system that ensures handling qualities.

A Study on Near Cut-In Performance Comparison on Adaptive Cruise Control Stop&Go (ACC Stop&Go 시스템의 근접 Cut-In 성능 비교에 대한 연구)

  • Lee, Dong-Han;Cho, Cheol-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.2
    • /
    • pp.103-109
    • /
    • 2012
  • Adaptive cruise control Stop&Go system has been developed to reduce the driver's workload on highway or public road. This system is characterized by a moderate control of engine and brake actuator. A control system capable of modeling driver's driving characteristics has been constructed to provide natural vehicle behavior in full speed driving. But, ACC Stop&Go system has some limitations. One of the limitations is a detection limitation on near cut-in situation. This paper presents development of the near cut-in test procedure, finding of the limitation value on near cut-in scenario and performance comparisons on ACC Stop&Go system.

Implementation of Integrated Controller of ACC/LKS based on OSEK OS (OSEK OS 기반 ACC/LKS 통합제어기 구현)

  • Choi, Dan-Bee;Lee, Kyung-Jung;Ahn, Hyun-Sik
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.5
    • /
    • pp.1-8
    • /
    • 2013
  • This paper implements an integrated vehicle chassis system of ACC(Adaptive Cruise Control) and LKS(Lane Keeping System) based on OSEK OS to vehicle operating system and analyzes its performance through experiments. In recent years active safety and advanced driver assistance system has discussed to improve safety of vehicle. Among the rest, We integrate ACC that controls longitudinal velocity of vehicle and LKS that assists a vehicle in maintaing its driving lane, then implement integrated control system in vehicle. Implemented control system uses OSEK/VDX proposed standard, which is aiming at reusability and safety of software for vehicle and removal hardware dependence of application software. Redesigned control system based on OSEK OS, which is supported by OSEK/VDX, can manage real-time task, process interrupt and manage shared resource. We show by results performed EILS(ECU-In-the-Loop Simulation) that OSEK OS-based integrated controller of ACC and LKS is equivalent conventional integrated controller of ACC and LKS.

Real-Time Fuzzy Neural Network Control for Real-Time Autonomous Cruise of Mobile Robot (이동로봇의 자율주행을 위한 실시간 퍼지신경망 제어)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.04a
    • /
    • pp.312-318
    • /
    • 2003
  • We propose a new technique for the cruise control system design of a mobile robot with three drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy neural network and back propagation algorithm to train the fuzzy neural network controller in the framework of the specialized teaming architecture. It is proposed a learning controller consisting of too neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tracking of the speed and azimuth of a mobile robot driven by three independent wheels.

  • PDF