• Title/Summary/Keyword: crossing tunnels

Search Result 23, Processing Time 0.02 seconds

Deformation behavior of tunnels crossing weak zone during excavation - numerical investigation (연약대를 통과하는 터널의 시공중 변위거동 - 수치해석 연구)

  • Yoo, Chungsik;Park, Jung-Gyu
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.4
    • /
    • pp.373-386
    • /
    • 2014
  • This paper concerns the deformation behavior of tunnels crossing weak zone during excavation. A three dimensional finite element model was adopted in order to conduct a parametric study on the orientation of weaj zone in terms of strike and dip angle relative to the tunnel longitudinal axis. The results of the analyses were then analyzed so that the tunnel displacements in terms of the ratios between the crown settlement and springline displacement can be related to the orientation of the weak zone. The results indicate that the displacement ratios between the tunnel crown and springline tend to quantitatively change when a weak zone exists near or ahead of the tunnel suggesting that the displacement ratios can be effectively used to predict the weak zone during tunnelling. Practical implications of the findings are discussed.

Seismic performance of the immersed tunnel under offshore and onshore ground motions

  • Bowei Wang;Guquan Song;Rui Zhang;Baokui Chen
    • Earthquakes and Structures
    • /
    • v.27 no.1
    • /
    • pp.41-55
    • /
    • 2024
  • There are obvious differences between the characteristics of offshore ground motion and onshore ground motion in current studies, and factors such as water layer and site conditions have great influence on the characteristics of offshore ground motion. In addition, unlike seismic response analysis of offshore superstructures such as sea-crossing bridges, tunnels are affected by offshore soil constraints, so it is necessary to consider the dynamic interaction between structure and offshore soil layer. Therefore, a seismic response analysis model considering the seawater, soil layer and tunnel structure coupling is established. Firstly, the measured offshore and different soil layers onshore ground records are input respectively, and the difference of seismic response under different types of ground motions is analyzed. Then, the models of different site conditions were input into the measured onshore bedrock strong ground motion records to study the influence of seawater layer and silt soft soil layer on the seabed and tunnel structure. The results show that the overall seismic response between the seabed and the tunnel structure is more significant when the offshore ground motion is input. The seawater layer can suppression the vertical seismic response of seabed and tunnel structure, while the slit soft soil layer can amplify the horizontal seismic response. The results will help to promote seismic wave selection of marine structures and provide reference for improving the accuracy of seismic design of immersed tunnels.

Risk assessment of water inrush in karst tunnels based on a modified grey evaluation model: Sample as Shangjiawan Tunnel

  • Yuan, Yong-cai;Li, Shu-cai;Zhang, Qian-qing;Li, Li-ping;Shi, Shao-shuai;Zhou, Zong-qing
    • Geomechanics and Engineering
    • /
    • v.11 no.4
    • /
    • pp.493-513
    • /
    • 2016
  • A modified grey clustering method is presented to systematically evaluate the risk of water inrush in karst tunnels. Based on the center triangle whitenization weight function and upper and lower limit measure whitenization weight function, the modified grey evaluation model doesn't have the crossing properties of grey cluster and meets the standard well. By adsorbing and integrating the previous research results, seven influence factors are selected as evaluation indexes. A couple of evaluation indexes are modified and quantitatively graded according to four risk grades through expert evaluation method. The weights of evaluation indexes are rationally distributed by the comprehensive assignment method. It is integrated by the subjective factors and the objective factors. Subjective weight is given based on analytical hierarchy process, and objective weight obtained from simple dependent function. The modified grey evaluation model is validated by Jigongling Tunnel. Finally, the water inrush risk of Shangjiawan Tunnel is evaluated by using the established model, and the evaluation result obtained from the proposed method is agrees well with practical situation. This risk assessment methodology provides a powerful tool with which planners and engineers can systematically assess the risk of water inrush in karst tunnels.

Fading characteristics of 2.4GHz band Wireless image signal for the Various Subway Tunnel Structures (지하철 터널 형태에 따른 2.4GHz 대역 무선영상 신호의 페이딩 특성)

  • Song, Ki-Hong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.2
    • /
    • pp.223-230
    • /
    • 2008
  • This paper deals with the measurements of wireless image signal in subway tunnels at 2.45GHz. Measurements have been conducted in 3 subway stations with different types; a straight tunnel and two curved tunnels. As a analysis result for the measured data, we found that the signal level inside straight tunnel by the strong multipath waves fluctuate deeply compared to the curved tunnel. The path loss exponent for the Shin-hung station with the straight tunnel is 2.5, those for the Pan-am and Dae-dong station with curved tunnels are 1.6 and 1.9, respectively. The fade depth and width at 50% point became relatively serious at Shin-hung station, the level crossing rate inside the Pan-am station is larger than the other stations. Therefore, it can be concluded that the fading phenomena affect to the signal performance generate seriously at straight tunnel compared to the curved tunnel.

Analysis for Characteristics Method on Wind Pressure of Trains Crossing in Tunnel (터널내 교행 열차의 풍압에 대한 특성법 해석)

  • Nam, Seong-Won
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.454-459
    • /
    • 2013
  • Pressure waves are generated and propagate in a tunnel when train enters tunnel high speed. A compression wave due to the entry of train head propagates along the tunnel and is reflected at tunnel exit as an expansion wave. An expansion wave due to the entry of the train tail propagates along the tunnel and is reflected at tunnel exit as a compression wave. These pressure waves are repeatedly propagated and reflected at the tunnel entrance and exit. Severe pressure changes causes ear-discomfort for passengers in the cabin and micro pressure waves around the tunnel exit. It is necessary to analyze the transient pressure phenomena in tunnels qualitatively and quantitatively, because pressure change rate is considered as one of the major design parameters for optimal tunnel cross sectional area and repeated fatigue force on car body. In this study, we developed a characteristics method based on a fixed mesh system and boundary conditions for crossing trains and analyzed this system using an X-t diagram. The results of the simulation show that offsetting of pressure waves occurs for special entry conditions of a crossing train.

Modeling Intersections and Other Structures for Highway Alignment Optimization (교차로와 구조물을 고려한 도로선형 최적화 모형 개발)

  • 김응철
    • Proceedings of the KOR-KST Conference
    • /
    • 2003.02a
    • /
    • pp.21-71
    • /
    • 2003
  • Previous alignment optimization models have not adequately considered intersections and other structures such as bridges, tunnels, grade separations and interchanges which can very strongly affect alignment decisions. This paper develops comprehensive cost functions for intersections and other structures and incorporates them in recently developed highway alignment optimization models connected with genetic algorithms and geographical information systems. The result is a fast and computerized process for extracting, analyzing spatial data, evaluating candidate alignments and optimizing them. A method for locally optimizing intersections is also developed. It improves search flexibility by saving good alignments whose unacceptable crossing angles with existing roads can be fixed, Through case studies, the developed model is found to produce feasible and efficient solutions.

  • PDF

Stability Evaluation for a riverbed tunnel in the Han River at the Fault Zone Crossing (한강 단층대를 통과하는 하저터널의 안정성 확보에 관한 연구)

  • Woo, Jong-Tae;Lee, Song
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.5 no.3
    • /
    • pp.225-231
    • /
    • 2001
  • When building tunnels beneath riverbeds where very large quantities of groundwater inflow exist, added to high water head the soil supporting conditions are very poor because the soil consists of sand and silt, etc. It is necessary to have grouting and mini pipe roof installed in the region for ground reinforcement to decrease permeability. According to this result of horizontal boring and laboratory soil testing, ground reinforcement was achieved by L.W grouting for range of 3.0 times the tunnel radius, to increase stability of the tunnel we used the ling-cut method, 0.8m for one step excavation, shotcrete with 25cm thick, steel lib with H-$125{\times}125$. and a temporary shotcrete invert 20cm thick was installed to prevent deformation of the tunnel.

  • PDF

Effect of spatial characteristics of a weak zone on tunnel deformation behavior

  • Yoo, Chungsik
    • Geomechanics and Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-58
    • /
    • 2016
  • This paper focuses on the deformation behavior of tunnels crossing a weak zone in conventional tunneling. A three-dimensional finite element model was adopted that allows realistic modeling of the tunnel excavation and the support installation. Using the 3D FE model, a parametric study was conducted on a number of tunneling cases with emphasis on the spatial characteristics of the weak zone such as the strike and dip angle, and on the initial stress state. The results of the analyses were thoroughly examined so that the three-dimensional tunnel displacements at the tunnel crown and the sidewalls can be related to the spatial characteristic of the weak zone as well as the initial stress state. The results indicate that the effectiveness of the absolute displacement monitoring data as early warning indicators depends strongly on the spatial characteristics of the weak zone. It is also shown that proper interpretation of the absolute monitoring data can provide not only early warning for a weak zone outside the excavation area but also information on the orientation and the extent of the weak zone. Practical implications of the findings are discussed.

Safety Evaluation Method for Ground Ammunition and Explosive Storage Facilities due to Underground Tunnel Blast (지하시설 굴착공사에 따른 탄약저장시설 안전성 평가방법 연구)

  • Park, Sangwoo;Kim, Kuk-Joo;Park, Young-Jun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.4
    • /
    • pp.331-339
    • /
    • 2019
  • Recently, expansion of urban and social infrastructures is planned to go through the transfer of military facilities or crossing the infrastructures via underground tunnels. However, when crossing facilities such as ammunition and explosive storages, a high level of safety assessment is required to prevent an accidental explosion of ground ammunition. In this study, a case study was conducted to evaluate the effect of blasting for the construction of tunnel on the ground ammunition facilities. The design section of Sinansan train operated by the Korea Railroad Authority with agreement of the Ministry of National Defense was selected. For the purpose of this study, the vibration velocity due to explosion was predicted by using GTS-NX, a numerical analysis program. Through literature review, it was confirmed that the vibration velocity of 0.2cm/sec can be a safety evaluation standard. These safety evaluation indicators and procedures used in this study can be utilized as an index of safety evaluation in the planning of social infrastructures that cross the ammunition facilities in the future.

Study on the Estimation of Safety Zone and the Movement of Ground at the Inter-Crossing Tunnel (교차터널에서의 지반거동 및 안전영역평가에 관한 연구)

  • Kim, Woo-Sung;Yoo, Dong-Uk;Lee, Sang-Eun
    • Tunnel and Underground Space
    • /
    • v.18 no.6
    • /
    • pp.491-502
    • /
    • 2008
  • A certain range of the original ground around the tunnel should be preserved to ensure structural safety of the tunnel when other structures are made around the tunnel, and thus this range is defined as safety zone of the tunnel. The main points to ensure the stability of an existing tunnel when constructing a new tunnel in an inter-crossing area are distance between two tunnels, size of the new tunnel, excavation method for the new tunnel, ground condition around the tunnel, and lining type of the existing tunnel etc. When the new tunnel is excavated above the existing tunnel, the existing tunnel is likely to suffer deformation at a crown zone, damage of arching effect, and live load of the new tunnel etc. On the other hand, when the new tunnel is excavated below the existing tunnel, the existing tunnel is likely to be damaged due to settlement. This study has been made on the behavior of the existing tunnel by means of model test and numerical analysis when the new tunnel is excavated below the existing tunnel. Safety zone of the tunnel was estimated by the results of strength/stress ratio obtained from numerical analysis, and the movement of ground was estimated by the model test. The results of earth pressure, ground displacements, and convergence of the tunnel obtained from model test were compared with those of numerical analysis, and show a similar trend.