• 제목/요약/키워드: cross-slip

검색결과 99건 처리시간 0.027초

Uniaxial bond stress-slip behavior of reinforcing bars embedded in lightweight aggregate concrete

  • Tang, Chao-Wei
    • Structural Engineering and Mechanics
    • /
    • 제62권5호
    • /
    • pp.651-661
    • /
    • 2017
  • This paper presents an experimental study of bond-slip behavior of reinforced lightweight aggregate concrete (LC) and normal weight concrete (NC) with embedded steel bar. Tests were conducted on tension-pull specimens that had cross-sectional dimension with a reinforcing bar embedded in the center section. The experimental variables include concrete strength (20, 40, and 60 MPa) and coarse aggregate type (normal-weight aggregate and reservoir sludge lightweight aggregate). The test results show that as concrete compressive strength increased, the magnitudes of the slip of the LC specimens were greater than those of the NC specimens. Moreover, the bond strength and stiffness approaches zero at the loaded end, or close to the central anchored point of the specimen. In addition, the proposed bond stress-slip equation can effectively estimate the behavior of bond stress and steel bar slipping.

Improved numerical approach for the bond-slip behavior under cyclic loads

  • Kwak, H.G.
    • Structural Engineering and Mechanics
    • /
    • 제5권5호
    • /
    • pp.663-677
    • /
    • 1997
  • Bond-slip behavior between reinforcement and concrete under push-pull cyclic loadings is numerically investigated based on a reinforcement model proposed in this paper. The equivalent reinforcing steel model considering the bond-slip effect without taking double nodes is derived through the equilibrium at each node of steel and the compatibility condition between steel and concrete. Besides a specific transformation algorithm is composed to transfer the forces and displacements from the nodes of the steel element to the nodes of the concrete element. This model first results in an effective use in the case of complex steel arrangements where the steel elements cross the sides of the concrete elements and second turns the impossibility into a possibility in consideration of the bond-slip effect in three dimensional finite element analysis. Finally, the correlation studies between numerical and experimental results under the continuously repeated large deformation stages demonstrate the validity of developed reinforcing steel model and adopted algorithms.

결정학적 방위에 의존하는 $Ni_3Al$ 단결정의 변형거동에 관한 연구 (A Study on the Deformation Behaviors of $Ni_3Al$ Single Crystals Depending on Crystallographic Orientations)

  • 한창석;천창환;한승오
    • 열처리공학회지
    • /
    • 제22권3호
    • /
    • pp.155-161
    • /
    • 2009
  • An investigation of the deformation behavior of ${\gamma}'-Ni_3Al$ single crystals containing fine dispersion of disordered ${\gamma}$ particles was performed for several different crystal orientations. Deformation structures were observed by the weak-beam method of transmission electron microscopy (TEM). The critical resolved shear stress (CRSS) for (111) [$\bar{1}$01] slie. increases with increasing temperature in the temperature range where (111) slip operates. The CRSS for (111) [$\bar{1}$01] slip is dependent on crystal orientation in the corresponding temperature range. The temperature where the strenjlth reaches a maximum is dependent on crystal orientation; the higher the ratio of the Schmid factors of (010) [$\bar{1}$01] to that of (111) [$\bar{1}$01], the higher the peak temperature. The peak temperatures were increased by the precipitation of y particles for the samples of all orientations. Electron microscopy of deformation induced dislocation arrangements under peak temperature has revealed that most of dislocations are straight screw dislocations. The mobility of screw dislocations decreases with increasing temperature. Above the peak temperature, dislocations begin to cross slip from the (111) [$\bar{1}$01] slip system to the (010) [$\bar{1}$01] slip system, thus decreasing the strength.

Analysis of dry friction hysteresis in a cable under uniform bending

  • Huang, Xiaolun;Vinogradov, Oleg
    • Structural Engineering and Mechanics
    • /
    • 제2권1호
    • /
    • pp.63-80
    • /
    • 1994
  • A cable is considered as a system of helical wires and a core with distributed dry friction forces at their interfaces. Deformations of the cable subjected to a uniform bending are analyzed. It is shown that there is a critical bending curvature when a slip at the wire-core interface occurs. It originates at the neutral axis of the cross section of the cable and then spreads symmetrically over the cross section with the increase of bending. The effect of slippage on the cable stiffness is investigated. This model is also used to analyze a cable under the quasi-static cyclic bending. Explicit expression for the hysteretic losses per cycle of bending is derived. Numerical examples are given to show the influence of dry friction and helix angle on the bending stiffness and hysteretic losses in the cable.

단순변형률 조건 하의 회전하는 가변단면 $90^{\circ}$ 곡덕트내 외향 난류유동 측정 (Measurement of Outward Turbulent Flows Subject to Plane Rate of Strain in a Rotating 90 Deg. Curved Duct of Variable Cross-Section)

  • 오창민;최영돈
    • 대한기계학회논문집B
    • /
    • 제24권5호
    • /
    • pp.623-631
    • /
    • 2000
  • Hot-wire measurements were carried out on the developing turbulent flows subject to plane rate of strain in a rotating curved duct. The cross-section of the curved duct varies from 100mm${\times}$50mm rectangular shape at the bend inlet gradually to the 50mm${\times}$100mm rectangular shape at the bend outlet. Experimental setup consists of the test section of $90^{\circ}$ curved duct, rotating disc of 1.95m diameter, Ag-Ni precision slip ring, automatic traversing mechanism, variable speed motor, centrifugal blower, orifice flowmeter and hot-wire anemometer. Data signals from the rotating curved duct are transmitted through the slip ring to the computer which is located at the outside of the rotating disc. 3-dimensional velocity and 6 Reynold stresses components were obtained from the fluctuating and mean voltage measured by the slant type hot-wire probe rotating into 6 orientations. We investigate the effects of Coriolis and centrifugal forces on the turbulence structure.

ETC 모드에서 Urea-SCR 시스템의 성능 특성 연구 (Study on the Performance Characteristics of Urea-SCR System in the ETC Test)

  • 함윤영;최동석;박용성
    • 한국자동차공학회논문집
    • /
    • 제18권2호
    • /
    • pp.122-128
    • /
    • 2010
  • To meet the NOx limit without a penalty of fuel consumption, urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, the performance characteristics of urea-SCR system with open loop control were assessed in the European Transient Cycle(ETC) for heavy duty diesel engine. The SCR inlet temperaure varied in the range of 200 to $340^{\circ}C$ in the ETC cycle. Open loop control calculated the urea flow rate based on the NOx and NSR map which gave for each combination of SCR inlet temperature and space velocity the normalized $NH_3$ to NOx stoichiometric ratio which resulted in a steady-state $NH_3$ slip of 20ppm. During the ETC cycle, the open loop control with the optimized NSR offset achieved NOx reduction of 80% while keeping the average $NH_3$ slip below 10ppm and maximum 20ppm. It was also found that NOx sensor was cross-sensitive to $NH_3$ and a control strategy for cross-sensitivity compensation was required in order to use a NOx sensor as feedback device.

MOLECULAR DYNAMICS SIMULATION OF INDENTATION ON SILVER COATED COPPER NANOSTRUCTURE

  • Kim, Am-Kee;Trandinh, Long;Kim, Il-Hyun
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.1794-1799
    • /
    • 2008
  • The effect of misfit on the indentation behaviour of silver coated copper multilayer was studied by molecular dynamics simulation. It was found that the misfit bands on interface formed by the mismatch of lattice structure between copper and silver in slip direction [110] and the dislocation band width depended on the mismatched lattice constants of materials. More dislocations were created and glided by indentation, which created a "four-wing flower" structure consisting of pile. up of dislocation at the interface. The size of "flower" depended on the thickness of silver layer. The critical thickness for "flower" was approximately 4nm above which the "flower" disappeared. As the result, deformation mechanisms such as dislocation pile-up, dislocation cross-slip and movement of misfit dislocation were revealed. Only silver atoms in the dislocation pile-up were involved in the creation of the "flower" while the dislocations in copper were glided in slip direction on interface.

  • PDF

CLT-콘크리트 합성 거동을 위한 전단 연결재 부재 실험과 해석 연구 (Experimental and Analytical Study of Shear Connectors for the CLT-Concrete Composite Floor System)

  • 박아론;이기학
    • 한국공간구조학회논문집
    • /
    • 제19권1호
    • /
    • pp.65-73
    • /
    • 2019
  • This paper assesses the structural performance (force-slip response, slip modulus, and failure modes) of a CLT-concrete composite by conducting fifteen push-out test specimens. In addition, non-linear 3D finite element analysis was also developed to simulate the load-slip behavior of the CLT-concrete specimens under shear load. All 15 test specimens simulating the effect of concrete thickness, connection angle and penetration depth with four different shear connector types were built and tested to evaluate the flexural performance. Experimental results show that the maximum shear capacity for the composite action is obtained when the fixing angle is $90^{\circ}$ and the penetration depth of 95mm for SC normal screw was used to achieve ductile failure compared to other shear connectors.

Flexural natural vibration characteristics of composite beam considering shear deformation and interface slip

  • Zhou, Wangbao;Jiang, Lizhong;Huang, Zhi;Li, Shujin
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.1023-1042
    • /
    • 2016
  • Based on Hamilton's principle, the flexural vibration differential equations and boundary conditions of the steel-concrete composite beam (SCCB) with comprehensive consideration of the influences of the shear deformation, interface slip and longitudinal inertia of motion were derived. The analytical natural frequencies of flexural vibration were compared with available results previously observed by the experiments, the results calculated by the FE model and the other similar beam theories available in the open literatures. The comparison results showed that, the calculation results of the analytical and Timoshenko models had a good agreement with the results of the experimental test and FE model. Finally, the influences of shear deformation and interface slip on the flexural natural frequencies of the SCCB were discussed. The shear deformation effect increases with the increase of the mode orders of flexural natural vibration, and the flexural natural frequencies of the higher mode orders ignoring the influence of shear deformations effect would be overestimated. The interface slip effect decrease with the increase of the mode orders of flexural natural vibration, and the influence of the interface slip effect on flexural natural frequencies of the low mode orders is significant. The influence of the degree of shear connection on shear deformation effect is insignificant, and the low order modes of flexural natural vibration are mainly composed of the rotational displacement of cross sections.