• 제목/요약/키워드: cross validation

검색결과 1,017건 처리시간 0.035초

로지스틱 회귀분석과 퍼지 기법을 이용한 산사태 취약성 지도작성: 보은군을 대상으로 (Landslide susceptibility mapping using Logistic Regression and Fuzzy Set model at the Boeun Area, Korea)

  • 알-마문;장동호
    • 한국지형학회지
    • /
    • 제23권2호
    • /
    • pp.109-125
    • /
    • 2016
  • This study aims to identify the landslide susceptible zones of Boeun area and provide reliable landslide susceptibility maps by applying different modeling methods. Aerial photographs and field survey on the Boeun area identified landslide inventory map that consists of 388 landslide locations. A total ofseven landslide causative factors (elevation, slope angle, slope aspect, geology, soil, forest and land-use) were extracted from the database and then converted into raster. Landslide causative factors were provided to investigate about the spatial relationship between each factor and landslide occurrence by using fuzzy set and logistic regression model. Fuzzy membership value and logistic regression coefficient were employed to determine each factor's rating for landslide susceptibility mapping. Then, the landslide susceptibility maps were compared and validated by cross validation technique. In the cross validation process, 50% of observed landslides were selected randomly by Excel and two success rate curves (SRC) were generated for each landslide susceptibility map. The result demonstrates the 84.34% and 83.29% accuracy ratio for logistic regression model and fuzzy set model respectively. It means that both models were very reliable and reasonable methods for landslide susceptibility analysis.

인증서기반의 Multi_Kerberos 인증시스템에 관한 연구 (A Study on Multi_Kerberos Authentication Mechanism based on Certificate)

  • 신광철;조성제
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권3호
    • /
    • pp.57-66
    • /
    • 2006
  • 본 논문에서는 IETF CAT Working Group에서 발표한 PKINIT기반의 인증서비스를 향상시킨 Multi_Kerberos 인증 메커니즘을 제안한다. PKINIT기반의 X.509, DS/DNS를 적용하여 영역간의 서비스를 제공하는 인증과 키 교환방식으로 DNS를 통해 외부영역의 위치를 탐색하고 X.509 디렉터리 인증 시스템을 적용, 영역간 체인(CertPath)으로 DNS 서버로부터 공개키를 획득하여 다른 영역을 인증하도록 하였다. 검증서버를 활용하여 인증서 경로생성 및 구축, 세션키의 복구, 인증서 기반의 키 관리를 포함한 상호영역(cross realm)에 대한 효율적인 인증서비스를 지원하는 메커니즘을 제안하였다. 이에 통신상의 절차를 감소시키는 효과와 인증절차의 간소화를 가지는 Multi_Kerberos 시스템을 설계하였다.

  • PDF

Clustering for Home Healthcare Service Satisfaction using Parameter Selection

  • Lee, Jae Hong;Kim, Hyo Sun;Jung, Yong Gyu;Cha, Byung Heon
    • International Journal of Advanced Culture Technology
    • /
    • 제7권2호
    • /
    • pp.238-243
    • /
    • 2019
  • Recently, the importance of big data continues to be emphasized, and it is applied in various fields based on data mining techniques, which has a great influence on the health care industry. There are many healthcare industries, but only home health care is considered here. However, applying this to real problems does not always give perfect results, which is a problem. Therefore, data mining techniques are used to solve these problems, and the algorithms that affect performance are evaluated. This paper focuses on the effects of healthcare services on patient satisfaction and satisfaction. In order to use the CVParameterSelectin algorithm and the SMOreg algorithm of the classify method of data mining, it was evaluated based on the experiment and the verification of the results. In this paper, we analyzed the services of home health care institutions and the patient satisfaction analysis based on the name, address, service provided by the institution, mood of the patients, etc. In particular, we evaluated the results based on the results of cross validation using these two algorithms. However, the existence of variables that affect the outcome does not give a perfect result. We used the cluster analysis method of weka system to conduct the research of this paper.

Application of a support vector machine for prediction of piping and internal stability of soils

  • Xue, Xinhua
    • Geomechanics and Engineering
    • /
    • 제18권5호
    • /
    • pp.493-502
    • /
    • 2019
  • Internal stability is an important safety issue for levees, embankments, and other earthen structures. Since a large part of the world's population lives near oceans, lakes and rivers, floods resulting from breaching of dams can lead to devastating disasters with tremendous loss of life and property, especially in densely populated areas. There are some main factors that affect the internal stability of dams, levees and other earthen structures, such as the erodibility of the soil, the water velocity inside the soil mass and the geometry of the earthen structure, etc. Thus, the mechanism of internal erosion and stability of soils is very complicated and it is vital to investigate the assessment methods of internal stability of soils in embankment dams and their foundations. This paper presents an improved support vector machine (SVM) model to predict the internal stability of soils. The grid search algorithm (GSA) is employed to find the optimal parameters of SVM firstly, and then the cross - validation (CV) method is employed to estimate the classification accuracy of the GSA-SVM model. Two examples of internal stability of soils are presented to validate the predictive capability of the proposed GSA-SVM model. In addition to verify the effectiveness of the proposed GSA-SVM model, the predictions from the proposed GSA-SVM model were compared with those from the traditional back propagation neural network (BPNN) model. The results showed that the proposed GSA-SVM model is a feasible and efficient tool for assessing the internal stability of soils with high accuracy.

An Intelligent Gold Price Prediction Based on Automated Machine and k-fold Cross Validation Learning

  • Baguda, Yakubu S.;Al-Jahdali, Hani Meateg
    • International Journal of Computer Science & Network Security
    • /
    • 제21권4호
    • /
    • pp.65-74
    • /
    • 2021
  • The rapid change in gold price is an issue of concern in the global economy and financial markets. Gold has been used as a means for trading and transaction around the world for long period of time and it plays an integral role in monetary, business, commercial and financial activities. More importantly, it is used as economic measure for the global economy and will continue to play an important economic vital role - both locally and globally. There has been an explosive growth in demand for efficient and effective scheme to predict gold price due its volatility and fluctuation. Hence, there is need for the development of gold price prediction scheme to assist and support investors, marketers, and financial institutions in making effective economic and monetary decisions. This paper primarily proposed an intelligent based system for predicting and characterizing the gold market trend. The simulation result shows that the proposed intelligent gold price scheme has been able to predict the gold price with high accuracy and precision, and ultimately it has significantly reduced the prediction error when compared to baseline neural network (NN).

근전도 기반의 Spider Chart와 딥러닝을 활용한 일상생활 잡기 손동작 분류 (Classification of Gripping Movement in Daily Life Using EMG-based Spider Chart and Deep Learning)

  • 이성문;피승훈;한승호;조용운;오도창
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권5호
    • /
    • pp.299-307
    • /
    • 2022
  • In this paper, we propose a pre-processing method that converts to Spider Chart image data for classification of gripping movement using EMG (electromyography) sensors and Convolution Neural Networks (CNN) deep learning. First, raw data for six hand gestures are extracted from five test subjects using an 8-channel armband and converted into Spider Chart data of octagonal shapes, which are divided into several sliding windows and are learned. In classifying six hand gestures, the classification performance is compared with the proposed pre-processing method and the existing methods. Deep learning was performed on the dataset by dividing 70% of the total into training, 15% as testing, and 15% as validation. For system performance evaluation, five cross-validations were applied by dividing 80% of the entire dataset by training and 20% by testing. The proposed method generates 97% and 94.54% in cross-validation and general tests, respectively, using the Spider Chart preprocessing, which was better results than the conventional methods.

다단계 구단위화를 이용한 고속 한국어 의존구조 분석 (High Speed Korean Dependency Analysis Using Cascaded Chunking)

  • 오진영;차정원
    • 한국시뮬레이션학회논문지
    • /
    • 제19권1호
    • /
    • pp.103-111
    • /
    • 2010
  • 한국어 처리에서 구문분석기에 대한 요구는 많은 반면 성능의 한계와 강건함의 부족으로 인해 채택되지 못하는 것이 현실이다. 본 연구는 구문분석을 레이블링 문제로 전환하여 성능, 속도, 강건함을 모두 실현한 시스템에 대해서 설명한다. 우리는 다단계 구 단위화(Cascaded Chunking)를 통해 한국어 구문분석을 시도한다. 각 단계에서는 어절별 품사 태그와 어절 구문표지를 자질로 사용하고 CRFs(Conditional Random Fields)를 이용하여 최적의 결과를 얻는다. 58,175문장 세종 구문 코퍼스로 10-fold Cross Validation(평균 10.97어절)으로 실험한 결과 평균 86.01%의 구문 정확도를 보였다. 이 결과는 기존에 제안되었던 구문분석기와 대등하거나 우수한 성능이며 기존 구문분석기가 처리하지 못하는 장문도 처리 가능하다.

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

정확한 댐유입량 예측을 위한 SWLSTM 개발 (Accurate dam inflow predictions using SWLSTM)

  • 김종호;쩐득충
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.292-292
    • /
    • 2021
  • 최근 데이터 과학의 획기적인 발전으로 딥러닝(Deep Learning) 알고리즘이 개발되어 다양한 분야에 널리 적용되고 있다. 본 연구에서는 인공신경망 중 하나인 LSTM(Long-Short Term Memory) 네트워크를 기반으로 정확한 댐유입량 예측을 수행하는 SWLSTM 모델을 제안하였다. SWLSM은 모델의 정확도를 개선하기 위해 세 가지 주요 아이디어를 채택하였다. (1) 통계적 속성 (PACF) 및 교차 상관 함수(CCF)를 사용하여 적절한 입력 변수와 시퀀스 길이를 결정하였다. (2) 선택된 입력 예측 변수 시계열을 웨이블릿 변환(WT)을 사용하여 하위 시계열로 분해한다. (3) k-folds cross validation 및 random search 기법을 사용하여 LSTM의 하이퍼 매개변수들을 효율적으로 최적화하고 검증한다. 제안된 SWLSTM의 효과는 한강 유역 5개 댐의 시단위/일단위/월단위 유입량을 예측하고 과거 자료와 비교함으로써 검증하였다. 모델의 정확도는 다양한 평가 메트릭(R2, NSE, MAE, PE)이 사용하였으며, SWLSTM은 모든 경우에서 LSTM 모델을 능가하였다. (평가 지표는 약 30 ~ 80 % 더 나은 성능을 보여줌). 본 연구의 결과로부터, 올바른 입력 변수와 시퀀스 길이의 선택이 모델 학습의 효율성을 높이고 노이즈를 줄이는 데 효과적임을 확인하였다. WT는 홍수 첨두와 같은 극단적인 값을 예측하는 데 도움이 된다. k-folds cross validation 및 random search 기법을 사용하면 모델의 하이퍼 매개변수를 효율적으로 설정할 수 있다. 본 연구로부터 댐 유입량을 정확하게 예측한다면 정책 입안자와 운영자가 저수지 운영, 계획 및 관리에 도움이 될 것이다.

  • PDF

언어모델을 활용한 문서 내 발화자 예측 분류 모델 (Speaker classification and prediction with language model)

  • 김경민;한승규;서재형;이찬희;임희석
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.317-320
    • /
    • 2020
  • 연설문은 구어체와 문어체 두 가지 특성을 모두 갖고 있는 복합적인 데이터 형태이다. 발화자의 문장 표현, 배열, 그리고 결합에 따라 그 구조가 다르기 때문에, 화자 별 갖는 문체적 특성 또한 모두 다르다. 국정을 다루는 정치인들의 연설문은 국정 현황을 포함한 다양한 주요 문제점을 다룬다. 그러면 발화자의 문서 내 문체적 특성을 고려할 경우, 해당 문서가 어느 정치인의 연설문인지 파악 할 수 있는가? 본 연구에서는 대한민국 정책 브리핑 사이트로부터 한국어 기반 사전 학습된 언어 모델을 활용하여 연설문에 대한 미세조정을 진행함으로써 발화자 예측 분류 모델을 생성하고, 그 가능성을 입증하고자 한다. 본 연구는 5-cross validation으로 모델 성능을 평가하였고 KoBERT, KoGPT2 모델에서 각각 90.22%, 84.41% 정확도를 보였다.

  • PDF