• Title/Summary/Keyword: cross sectional method

Search Result 1,324, Processing Time 0.026 seconds

Quantity Estimation Method for High-Performance Insulated Wall Panels with Complex Details Using BIM Family Libraries (BIM의 패밀리 라이브러리를 이용한 복잡한 상세를 갖는 고단열 벽체 판넬의 물량 산출 방법)

  • Mun, Ju-Hyun
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.4
    • /
    • pp.447-458
    • /
    • 2024
  • This study investigates the effectiveness of Building Information Modeling(BIM) software, specifically SketchUp and Revit, in reducing errors during quantity take-off(QTO) for complex building elements. While 3D modeling offers advantages, existing software may not fully account for manufacturing discrepancies, such as variations in concrete cover thickness and reinforcing bar radius. To address this limitation, this research proposes a BIM-based QTO method for high-insulation wall panels with intricate details. The method utilizes a BIM family library, focusing on key parameters like concrete cover thickness and inner radius of shear reinforcement. A case study compared the cross-sectional details of a wall panel modeled in Revit with the actual manufactured specimen. The analysis revealed a 12% reduction in modeled concrete cover thickness and a 1.27 times larger modeled inner radius of the shear bar compared to the real-world values. The proposed method incorporates these manufacturing variations into the Revit model of the high-insulation wall panel. Software like Navisworks facilitates the identification and correction of any material interferences arising from these adjustments. Furthermore, the method employs a unit wall concept(1m2) to account for the volume of various materials, including insulation and splice sleeves at joints. This allows for the identification of a similar existing family within the BIM library(e.g., "Double RC wall with embedded insulation") that reflects the actual material quantities used in the wall panel. By incorporating these manufacturing-induced variations, the proposed method offers a more accurate QTO process for complex high-insulation wall panels. The "Double RC wall with embedded insulation" family within the Revit program serves as a valuable tool for material quantity estimation in such scenarios.

Development of an anisotropic spatial interpolation method for velocity in meandering river channel (비등방성을 고려한 사행하천의 유속 공간보간기법 개발)

  • You, Hojun;Kim, Dongsu
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.7
    • /
    • pp.455-465
    • /
    • 2017
  • Understanding of the two-dimensional velocity field is crucial in terms of analyzing various hydrodynamic and fluvial processes in the riverine environments. Until recently, many numerical models have played major roles of providing such velocity field instead of in-situ flow measurements, because there were limitations in instruments and methodologies suitable for efficiently measuring in the broad range of river reaches. In the last decades, however, the advent of modernized instrumentations started to revolutionize the flow measurements. Among others, acoustic Doppler current profilers (ADCPs) became very promising especially for accurately assessing streamflow discharge, and they are also able to provide the detailed velocity field very efficiently. Thus it became possible to capture the velocity field only with field observations. Since most of ADCPs measurements have been mostly conducted in the cross-sectional lines despite their capabilities, it is still required to apply appropriate interpolation methods to obtain dense velocity field as likely as results from numerical simulations. However, anisotropic nature of the meandering river channel could have brought in the difficulties for applying simple spatial interpolation methods for handling dynamic flow velocity vector, since the flow direction continuously changes over the curvature of the channel shape. Without considering anisotropic characteristics in terms of the meandering, therefore, conventional interpolation methods such as IDW and Kriging possibly lead to erroneous results, when they dealt with velocity vectors in the meandering channel. Based on the consecutive ADCP cross-sectional measurements in the meandering river channel. For this purpose, the geographic coordinate with the measured ADCP velocity was converted from the conventional Cartesian coordinate (x, y) to a curvilinear coordinate (s, n). The results from application of A-VIM showed significant improvement in accuracy as much as 41.5% in RMSE.

Effect of Mandibular Repositioning Device on Airway Size and Airway Collapsibility in Obstructive Sleep Apnea Syndrome : Cine CT during Sleep (수면무호흡증 환자에서 Mandibular Repositioning Device가 Airway size와 Airway Collapsibility에 미치는 효과)

  • Hong, Seung-Bong;Kyung, Seung-Hyun;Han, Hyun-Jung;Na, Dong-Kyu;Son, Young-Ik;Park, Young-Chel
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.2
    • /
    • pp.110-115
    • /
    • 1999
  • Objectives: To investigate the effect of mandibular repasitioning device on airway sige and airway collapsibility in patients with obstructive sleep apnea syndrome(OSAS). Methods: Cine CT with polysomnographic monitoring was performed during sleep in nine(OSAS) patients before and after manibular repositioning device(MRD) application. Axial CT images were obtained in five upper airway levels(retropalatal-high, retroalatal-low, retroglossal, epiglottis, and hypopharynx levels). In each airway level, one axial CT image was obtained during sleep apnea period and 10 serial axial CT images were scanned every 1 second during normal sleep breathing. After wearing MRD, all CT images were obtained by the same method. The cross-sectional areas of airway were measured by automatic tracing method. The changes of minimum airway size and maximum airway size after MRD were evaluated. The airway collapsibility was calculaed before and after MRD. Results: During sleep apnea, the airway of retropalatal-low level was the most frequently narrowest site. During normal sleep breahing the minimum airway size was increased significantly after MRD at retropalatal-low level(p=0.011). The mean airway collapsibility was the highest at retropalatal-low level. MRD decreased the airway collapsibility significantly at retropalatal-low level(p=0.021) and epiglottis level(p=0.038). Conclusions: The enlargement of the minimum airway size and decreased airway collapsibility may be the therapeutic mechanism of MRD in obstructive sleep apnea.

  • PDF

Application of Amplitude Demodulation to Acquire High-sampling Data of Total Flux Leakage for Tendon Nondestructive Estimation (덴던 비파괴평가를 위한 Total Flux Leakage에서 높은 측정빈도의 데이터를 획득하기 위한 진폭복조의 응용)

  • Joo-Hyung Lee;Imjong Kwahk;Changbin Joh;Ji-Young Choi;Kwang-Yeun Park
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.17-24
    • /
    • 2023
  • A post-processing technique for the measurement signal of a solenoid-type sensor is introduced. The solenoid-type sensor nondestructively evaluates an external tendon of prestressed concrete using the total flux leakage (TFL) method. The TFL solenoid sensor consists of primary and secondary coils. AC electricity, with the shape of a sinusoidal function, is input in the primary coil. The signal proportional to the differential of the input is induced in the secondary coil. Because the amplitude of the induced signal is proportional to the cross-sectional area of the tendon, sectional loss of the tendon caused by ruptures or corrosion can be identified by the induced signal. Therefore, it is important to extract amplitude information from the measurement signal of the TFL sensor. Previously, the amplitude was extracted using local maxima, which is the simplest way to obtain amplitude information. However, because the sampling rate is dramatically decreased by amplitude extraction using the local maxima, the previous method places many restrictions on the direction of TFL sensor development, such as applying additional signal processing and/or artificial intelligence. Meanwhile, the proposed method uses amplitude demodulation to obtain the signal amplitude from the TFL sensor, and the sampling rate of the amplitude information is same to the raw TFL sensor data. The proposed method using amplitude demodulation provides ample freedom for development by eliminating restrictions on the first coil input frequency of the TFL sensor and the speed of applying the sensor to external tension. It also maintains a high measurement sampling rate, providing advantages for utilizing additional signal processing or artificial intelligence. The proposed method was validated through experiments, and the advantages were verified through comparison with the previous method. For example, in this study the amplitudes extracted by amplitude demodulation provided a sampling rate 100 times greater than those of the previous method. There may be differences depending on the given situation and specific equipment settings; however, in most cases, extracting amplitude information using amplitude demodulation yields more satisfactory results than previous methods.

A Study on the Method of Magnetic Flux Leakage NDTfor Detecting Axial Cracks (축방향 미소결함 검출을 위한 자기누설 비파괴 검사 방법에 관한 연구)

  • Yun, Seung-Ho;Park, Gwan-Soo
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • From among the NDT (nondestructive testing) methods, the MFL (magnetic flux leakage) method is specially suitable for testing pipelines because pipeline has high magnetic permeability. The system applied to MFL method is called the MFL PIG. The previous MFL PIG showed high performance in detecting the metal loss and corrosions. However, MFL PIG is highly unlikely to detect the cracks which occur by exterior-interior pressure difference in pipelines and the shape of crack is long and very narrow. In MFL PIG, the magnetic field is performed axially and there is no changes of cross-sectional area at cracks that the magnetic field passes through. Cracks occur frequently in the pipelines and the risk of the accident from the cracks is higher than that from the metal loss and corrosions. Therefore, the new PIG is needed to be researched and developed for detecting the cracks. The circumferential MFL (CMFL) PIG performs magnetic fields circumferentially and can maximize the magnetic flux leakage at the cracks. In this paper, CMFL PIG is designed and the distribution of the magnetic fields is analyzed by using 3 dimensional nonlinear finite element method (FEM). In CMFL PIG, cracks, standards of NACE, are detectable. To estimate the shape of crack, the leakage of magnetic fields for many kinds of cracks is analyzed and the method is developed by signal processing.

Improvement of the Method using the Coefficient of Variation for Automatic Multi-segmentation Method of a Rating Curve (수위-유량관계곡선의 자동구간분할을 위한 변동계수 활용기법의 개선)

  • Kim, Yeonsu;Kim, Jeongyup;An, Hyunuk;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.10
    • /
    • pp.807-816
    • /
    • 2015
  • In general, the water stage-discharge relationship curve is established based on the assumptions of linearity and homoscedasticity. However, the relationship between the water stage and discharge is affected from geomorphological factors, which violates the basic assumptions of the water stage-discharge relationship curve. In order to reduce the error due to the violations, the curve is divided into several sections based on the manager's judgement considering change of cross-sectional shape. In this research, the objective-splitting criteria of the curve is proposed based on the measured data without the subjective decision. First, it is assumed that the coefficient of variation follows the normal distribution. Then, if the newly calculated coefficient of variation is outside of the 95% confidential interval, the curve is divided. Namely, the groups is divided by the characteristics of the coefficient of variation and the reasonable criteria is provided for establishing a multi-segmented rating curve. To validate the proposed method, it was applied to the data generated by three artificial power functions. In addition, to confirm the applicability of the proposed method, it is applied to the water stage and discharge data of the Muju water stage gauging station and Sangegyo water stage gauging station. As a result, it is found that the automatically divided rating curve improves the accuracy and extrapolation accuracy of the rating curve. Finally, through the residual analysis using Shapiro-Wilk normality test, it is confirmed that the residual of water stage-discharge relationship curve tends to follow the normal distribution.

The Case Study on the Design, Construction, Quality Control of Deep Cement Mixing Method (심층혼합처리공법(DCM)의 설계, 시공 및 품질관리 사례 연구)

  • Kim, Byung-Il;Park, Eon-Sang;Han, Sang-Jae
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.19-32
    • /
    • 2021
  • In this study, evaluation and consideration of domestic/overseas design, construction, and quality control performed by the authors on the deep cement mixing method were performed, and improvements for the development of the DCM method were suggested in the future. As a result of this study, it was found that the cross-sectional area correction for strength is required during the laboratory test of mix proportion, and caution is required because the extrapolation method may lead to different results from the actual one. Applicable design methods should be selected in consideration of both the improvement ratio and the type of improvement during design, and it was confirmed that the allowable compressive strength to which the safety factor was applied refers to the standard value for stability review and not the design parameters. In the case of the stress concentration ratio, rather than applying a conventional value, it was possible to perform economical design by calculating the experimental and theoretical stress concentration ratio reflecting the design conditions. In the case where pre-boring is expected during construction, if the increased water content is not large compared to the original, there were cases where a major problem did not occur even if the result that did not consider the increase in water content was used. In addition, it was confirmed that when the ratio of the top treatment length to the improved length is high, a small amount of design cement contents per unit length can be injected during construction. In the case of quality control, it was evaluated that D/4~2D/4 for single-axis and D/4 point for multi-axis were optimal for coring of grouting mixtures. As an item for quality control, it is judged that the standard that considers the TCR along with the unconfined compressive strength of grouting mixtures is more suitable for the domestic situation.

Evaluation on Adiabatic Property for Vehicular Sandwich Composite Structure (차체 구조용 샌드위치 복합소재 단열 특성 평가)

  • Lee Sang Jin;Oh Kyung Won;Jeong Jong Cheol;Kong Chang duk;Kim Jeong Seok;Cho Se Hyun
    • Composites Research
    • /
    • v.19 no.1
    • /
    • pp.9-14
    • /
    • 2006
  • Experimental investigation on heat transfer ratio was firstly performed with three types of sandwich panels such as the Carbon/Epoxy Skin-Aluminum Honeycomb and Balsa Core Sandwich Panel of 37mm thickness, the Carbon/Epoxy Aluminum Skin-Honeycomb Core Sandwich Panel of 57mm thickness (including insulator) and the Carbon/Epoxy Skin-Aluminum Honeycomb Core Sandwich Panel of 37mm thickness based on the KS F 2278:2003(Insulation test method of windows). In additional to this investigation, experimental tests were also done for evaluation of heat transportation ratio with the Aluminum Skin- Aluminium Honeycomb Sandwich Panels of 27mm and 35mm thickness, and Aluminum Skin-Foaming Aluminum Sandwich Panel of 27mm thickness by the KS F2277:2002 (Insulation measuring method of construction component-Calibration heat box method or protective heat box method). In this study, it was found that the larger net heat transfer cross sectional area between the skin and the sandwich core is given, the higher heat transportation ratio occurs. It was also found that the hybrid type insulation had better insulation characteristics compared to the non-hybrid type insulation.

Development of Vertical Separated Tubular Steel Pole (종방향 분할형 관형지지물 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.257-262
    • /
    • 2019
  • Lattice steel towers for overhead transmission lines have been replaced by tubular steel poles due to the visual impact of large and complex shape of truss type. Demand for tubular steel poles consisting of a single frame member continues to grow because of its advantages such as visual minimization, architectural appeal and minimal site consumptions. However, there are some constraints on the transportation and construction. As the diameter of tower base has been enlarged, it may exceed minimum height limit required to pass the tunnel in case of land transportation. Also, in a narrow place where it is not easy to secure the installation areas such as mountainous places, there might be some areas wherein it must secure a wide working space so that large vehicles and working cranes will be allowed to enter. In this paper, we presented a vertical separated tubular steel pole, which is a new type of support that can be implemented for general purpose such as mountainous areas or narrow areas to improve the issues raised by breaking away from the conventional design and fabrication methods. Technical approaches for overcoming the limit of the cross-sectional size is to separate and modularize the cross-section of the tubular steel pole designed with a size that cannot be carried or assembled, and to lighten it with a weight capable of being transported and assembled in a narrow space or mountainous area. As a result of this research, it will be possible to enter small and medium sized vehicles in locations where it is restricted to transport by large-sized vehicles. In the case of mountainous areas, it will be possible to divide it into a weight capable of being carried by a helicopter and it will be easy to adjust and fabricate it with individual modules. Furthermore, in order to break away from the traditional construction method, we proposed the equipment that can be applied to the assembly of Tubular Steel Pole without using a large crane in locations where there is no accessible road or in locations wherein large cranes cannot enter. In particular, this paper shows the movable assembling equipment and some methods that are specialized for vertical separated tubular steel pole consisting of members with reduced weight. The proposed assembly equipment is a device for assembling the body of the Tubular Steel Poles. It will be installed inside the support and the modules can be lifted by using the support itself.

Developing the Electrode Board for Bio Phase Change Template (바이오 상변화 Template 위한 전극기판 개발)

  • Li, Xue Zhe;Yoon, Junglim;Lee, Dongbok;Kim, Sookyung;Kim, Ki-Bum;Park, Young June
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.715-719
    • /
    • 2009
  • The phase change electrode board for the bio-information detection through electrical property response of phase change material was developed in this study. We manufactured the electrode board using Aluminum first that is widely used in conventional semiconductor device process. Without further treatment, these aluminum electrodes tend to contain voids in PETEOS(plasma enhanced tetraethyoxysilane) material that are easily detected by cross-sectional SEM(Scanning Electron Microscope). The voids can be easily attacked and transformed into holes in between PETEOS and electrodes after etch back and washing process. In order to resolve this issue of Al electrode board, we developed a electrode board manufacturing method using low resistivity TiN, which has advantages in terms of the step-coverage of phase change($Ge_2Sb_2Te_5$, GST) thin film as well as thermodynamic stability, without etch back and washing process. This TiN material serves as the top and bottom electrode in PRAM(Phase-change Random Access Memory). The good connection between the TiN electrode and GST thin film was confirmed by observing the cross-section of TiN electrode board using SEM. The resistances of amorphous and crystalline GST thin film on TiN electrodes were also measured, and 1000 times difference between the amorphous and crystalline resistance of GST thin film was obtained, which is well enough for the signal detection.