• Title/Summary/Keyword: cross section shape

Search Result 746, Processing Time 0.023 seconds

Strength Prediction Model of Interior Flat-Plate Column Connections according to Design Parameters (설계변수에 따른 플랫플레이트-기둥 접합부의 강도산정모형)

  • Lee, Do-Bum;Park, Hong-Gun;Lee, Li-Hyung
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.405-414
    • /
    • 2006
  • In the present study, a numerical analysis was performed for interior connections of continuous flat plate to analyze the effect of design parameters such as column section shape, gravity load and slab span on the behavioral characteristics of the connections. For the purpose, a computer program for nonlinear FE analysis was developed, and the validity was verified. Through the parametric study, the variations of shear stress distribution around the connection were investigated. According to the result of numerical analysis, as the length of the cross section of column in the direction of lateral load increases and gravity load increases, the effective area and the maximum shear strength providing the torsional resistance decrease considerably. And as the slab span loaded with relatively large gravity load increases, the negative moment around the connection increases and therefore the strength of connection against unbalanced moment decreases. By considering the effect of design parameters on the strength of the connections, the effective shear strength to calculate the torsional moment capacity of connection was proposed and the effectiveness of the proposed shear strength was verified.

A basic study on explosion pressure of hydrogen tank for hydrogen fueled vehicles in road tunnels (도로터널에서 수소 연료차 수소탱크 폭발시 폭발압력에 대한 기초적 연구)

  • Ryu, Ji-Oh;Ahn, Sang-Ho;Lee, Hu-Yeong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.517-534
    • /
    • 2021
  • Hydrogen fuel is emerging as an new energy source to replace fossil fuels in that it can solve environmental pollution problems and reduce energy imbalance and cost. Since hydrogen is eco-friendly but highly explosive, there is a high concern about fire and explosion accidents of hydrogen fueled vehicles. In particular, in semi-enclosed spaces such as tunnels, the risk is predicted to increase. Therefore, this study was conducted on the applicability of the equivalent TNT model and the numerical analysis method to evaluate the hydrogen explosion pressure in the tunnel. In comparison and review of the explosion pressure of 6 equivalent TNT models and Weyandt's experimental results, the Henrych equation was found to be the closest with a deviation of 13.6%. As a result of examining the effect of hydrogen tank capacity (52, 72, 156 L) and tunnel cross-section (40.5, 54, 72, 95 m2) on the explosion pressure using numerical analysis, the explosion pressure wave in the tunnel initially it propagates in a hemispherical shape as in open space. Furthermore, when it passes the certain distance it is transformed a plane wave and propagates at a very gradual decay rate. The Henrych equation agrees well with the numerical analysis results in the section where the explosion pressure is rapidly decreasing, but it is significantly underestimated after the explosion pressure wave is transformed into a plane wave. In case of same hydrogen tank capacity, an explosion pressure decreases as the tunnel cross-sectional area increases, and in case of the same cross-sectional area, the explosion pressure increases by about 2.5 times if the hydrogen tank capacity increases from 52 L to 156 L. As a result of the evaluation of the limiting distance affecting the human body, when a 52 L hydrogen tank explodes, the limiting distance to death was estimated to be about 3 m, and the limiting distance to serious injury was estimated to be 28.5~35.8 m.

Performance Evaluation of Encased-Concrete Bridge Plate(Deep Corrugated Steel Plate) Member (콘크리트 충전 브릿지 플레이트(대골형 파형강판) 부재의 성능평가)

  • Sim, Jong-Sung;Park, Cheol-Woo;Kim, Tae-Soo;Lee, Hyoung-Ho;Kang, Tae-Sung
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.3
    • /
    • pp.297-303
    • /
    • 2010
  • The current encased-concrete deep corrugated steel plate has an arch type plate structure, which is a compressive strength-dominant structure that has a small moment due to its arch shape. Therefore, it increases the strength against compression by adding reinforcements to make concrete-filling spaces for increasing the compressive strength and forming cross sections that contain reinforced concrete. In this study, the safety factor of the new-concept encased-concrete bridge plate member was evaluated by comparing the compressive strength obtained from the compressive tests, flexural tests and the design compressive strength determined by using the Canadian Highway Bridge Design Code (CHBDC, 2003), which is a design standard for the encased-concrete bridge plate structures. The results of the safety factor evaluation using the design compressive strength and the test results showed that the safety factor was well above the appropriate value 2.0, which could be adjudged very conservative. If the safety factor based on this study results is considered and applied to the design, economical construction will be possible due to the reduced cross section and construction cost.

Development of Vertical Separated Tubular Steel Pole (종방향 분할형 관형지지물 개발)

  • Lee, Won-kyo;Mun, Sung-Duk;Shin, Kooyong
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.257-262
    • /
    • 2019
  • Lattice steel towers for overhead transmission lines have been replaced by tubular steel poles due to the visual impact of large and complex shape of truss type. Demand for tubular steel poles consisting of a single frame member continues to grow because of its advantages such as visual minimization, architectural appeal and minimal site consumptions. However, there are some constraints on the transportation and construction. As the diameter of tower base has been enlarged, it may exceed minimum height limit required to pass the tunnel in case of land transportation. Also, in a narrow place where it is not easy to secure the installation areas such as mountainous places, there might be some areas wherein it must secure a wide working space so that large vehicles and working cranes will be allowed to enter. In this paper, we presented a vertical separated tubular steel pole, which is a new type of support that can be implemented for general purpose such as mountainous areas or narrow areas to improve the issues raised by breaking away from the conventional design and fabrication methods. Technical approaches for overcoming the limit of the cross-sectional size is to separate and modularize the cross-section of the tubular steel pole designed with a size that cannot be carried or assembled, and to lighten it with a weight capable of being transported and assembled in a narrow space or mountainous area. As a result of this research, it will be possible to enter small and medium sized vehicles in locations where it is restricted to transport by large-sized vehicles. In the case of mountainous areas, it will be possible to divide it into a weight capable of being carried by a helicopter and it will be easy to adjust and fabricate it with individual modules. Furthermore, in order to break away from the traditional construction method, we proposed the equipment that can be applied to the assembly of Tubular Steel Pole without using a large crane in locations where there is no accessible road or in locations wherein large cranes cannot enter. In particular, this paper shows the movable assembling equipment and some methods that are specialized for vertical separated tubular steel pole consisting of members with reduced weight. The proposed assembly equipment is a device for assembling the body of the Tubular Steel Poles. It will be installed inside the support and the modules can be lifted by using the support itself.

Early Autumn Maturing Pear Cultivar 'Sinhwa' with Fascinating Very Soft Flesh (부드러운 육질이 매력적인 중생종 배 '신화')

  • Kang, Sam-Seok;Kim, Yoon-Kyeong;Hwang, Hea Seong;Cho, Kwang-Sik;Shin, Il-Sheob;Won, Kyeong-Ho;Choi, Jang-Jeon;Kim, Ki-Hong;Jo, Ji Hyeong
    • Horticultural Science & Technology
    • /
    • v.31 no.4
    • /
    • pp.512-516
    • /
    • 2013
  • Pear cultivar 'Sinhwa' (Pyrus pyrifolia var. culta Nakai) was originated from a cross between 'Niitaka' and Whasan' with the aims of improving the fruit quality and the traits of cultivation and of early maturing more than 'Whasan' cultivar at Pear Research Station of National Institute of Horticultural & Herbal Science, Rural Development Administration in 1995. 'Sinhwa' was preliminarily selected in 2004 and named in 2009. The tree shows vigorous growth habit and semi-spread characters like 'Niitaka'. Furthermore, it has a sufficient and well upkeep of the flower bud, so it can be more easily cultivated in orchards. In the flower characteristics, flowering time of 'Sinhwa' is $11^{th}$ April like as maternal parent 'Niitaka'. Also 'Sinhwa' has short of pollen grains, so it is need above two pollinizer cultivars. 'Sinhwa' is highly resistant to black leaf spot (Alternaria kikuchiana) and relatively strong to pear scab (Venturia nashicola) in field condition. The optimum harvest time is around Sep. $15^{th}$ in Naju, which is ahead of 'Whasan' about 10 days in the harvest period. The fruit shape is oblate and fruit skin color is yellowish-brown during harvesting time. The average weight of fruit is 627 g, and the soluble solids content is $13.0^{\circ}Brix$. The flesh is very soft and juicy, and renders good eating quality. Shelf life is about 30 days under the room temperature condition.

Selective growth of GaN nanorods on the top of GaN stripes (GaN stripe 꼭지점 위의 GaN 나노로드의 선택적 성장)

  • Yu, Yeonsu;Lee, Junhyeong;Ahn, Hyungsoo;Shin, Kisam;He, Yincheng;Yang, Min
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.145-150
    • /
    • 2014
  • GaN nanorods were grown on the apex of GaN stripes by three dimensional selective growth method. $SiO_2$ mask was partially removed only on the apex area of the GaN stripes by an optimized photolithography for the selective growth. Metallic Au was deposited only on the apex of the GaN stripes and a selective growth of GaN nanorods was followed by a metal organic vapor phase epitaxy (MOVPE). We confirmed that the shape and size of the GaN nanorods depend on growth temperature and flow rates of group III precursor. GaN nanorods were grown having a taper shape which have sharp tip and triangle-shaped cross section. From the TEM result, we confirmed that threading dislocations were rarely observed in GaN nanorods because of the very small contact area for the selective growth. Stacking faults which might be originated from a difference of the crystal facet directions between the GaN stripe and the GaN nanorods were observed in the center area of the GaN nanorods.

The Inelastic Behavior of High Strength Reinforced Concrete Tall Walls (고강도 철근콘크리트 고층형 내력벽의 비탄성 거동에 관한 실험 연구)

  • 윤현도;정학영;최창식;이리형
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.3
    • /
    • pp.139-148
    • /
    • 1995
  • The test results from three one fourth scale models using high strength Reinforced Concrete $f_x=704\;kg/cm^2,\;f_y=5.830\;kg/cm^2$ are presented. Such specimens are considered to represent the critical 3 storics of 60-story tall building of a structural wall system in area of high seismicity respectively. They are tested under inplane vertical and horizontal loading. The main varlable is the level of axial stress. The amounts of vertical and horizontal reinforcement are identical for the three walls testcd. The cross-section of all walls is barbell shape. The aspectratio($h_w/I_w$) of test specimen is 1.8. The aim of the study is to investigate the effects of levels of applied axial stresses on the inelastic behavior of high-strength R /C tall walls. Experimental results of high strength R /C tall walls subjected to axial load and simulated sels rnic loading show that it is possible to insure a ductlle dominant performance by promotmg flex ural yielding of vertical reinforcement and that axial stresses within $O.21f_x$ causes an increase in horizontal load-carrying capacity, initial secant st~ffness characteristics, but an decrease in displacement ductility. energy dissipation index and work damage index of high strength K /C tall walls

A Morphological Comparison of Bamboo Zephyr Produced from Phyllostachys nigra var. henonis and Indonesian Gigantochloa apus (국산 솜대와 인도폐시아산 TALI를 이용한 대나무 Zephyr의 형태적 특성 비교)

  • Kim, Yu-Jung;Jung, Ki-Ho;Park, Sang-Jin;Roh, Jeang-Kwan
    • Journal of the Korean Wood Science and Technology
    • /
    • v.29 no.2
    • /
    • pp.84-90
    • /
    • 2001
  • To investigate morphological characteristics of zephyr produced from two bamboo species, Phyllostachys nigra var. henonis and Gigantochloa apus, basic anatomic properties were examined by scanning electron microscopy and image analysis. According to SEM observation, zephyr from Phyllostachys nigra var. henonis was not of uniform in shape and showed macro crack between vascular bundle sheaths. This may be attributes to the sclerenchymatous fibers connected closely, thus resulting in difficult separation of intercellular layer. Zephyr from Gigantochloa apus was of uniform in shape, which may be caused by easy separation of intercellular layer of sclerenchymatous fibers having thin cell wall and large cell lumen. By image analysis in cross section of two species, the ratio of vascular bundle sheaths and cell wall ratio of sclerenchymatous fibers were examined. The ratio of vascular bundle sheaths in Phyllostachys nigra var. henonis was lower than that in Gigantochloa apus. However, cell wall ratio of sclerenchymatous fibers in Phyllostachys nigra var. henonis was higher than that in Gigantochloa apus.

  • PDF

An application of image processing technique for bed materials analysis in gravel bed stream: focusing Namgang (자갈하천의 하상재료분석을 위한 화상해석법 적용: 남강을 중심으로)

  • Kim, Ki Heung;Jung, Hea Reyn
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.8
    • /
    • pp.655-664
    • /
    • 2018
  • The riverbed material survey is to investigate the particle size distribution, specific gravity, porosity, etc. as basic data necessary for river channel plan such as calculation of sediment transport and change of river bed. In principle, the survey spots are 1 km interval in the longitudinal direction of the river and 3 points or more in the 1 cross section. Therefore, depending on longitudinal length of the river to be investigated, the number of surveyed sites is very large, and the time and cost for the investigation are correspondingly required. This study is to compare the particle size analysis method with the volumetric method and the image analysis method in work efficiency and cost and to examine the applicability of the image analysis method. It was confirmed that the diameter of the equivalent circle converted by the image analysis method can be applied to the analysis of bed material particle size. In the gravel stream with a particle size of less than 10 cm and a large shape factor, the analytical result of the bed material by the image analysis method is accurate. However, when the shape factor decreases as the particle size increases, the error increases. In addition, analysis results of the work efficiency and cost of the volume method and the image analysis method showed a reduction of about 80%.

Morphological and Genetic Characteristics of Colletotrichum gloeosporioides Isolated from Newly Emerging Static-Symptom Anthracnose in Apple

  • Jeon, Yongho;Cheon, Wonsu
    • 한국균학회소식:학술대회논문집
    • /
    • 2014.10a
    • /
    • pp.34-34
    • /
    • 2014
  • Filamentous fungi of the genus Colletotrichum (teleomorph, Glomerella) are considered major plant pathogens worldwide. Cereals, legumes, vegetables, and fruit trees may be seriously affected by this pathogen (1). Colletotrichum species cause typical disease symptoms known as anthracnoses, characterized by sunken necrotic tissue, where orange conidial masses are produced. Anthracnose appears in both developing and mature plant tissues (2). We investigated disease occurrence in apple orchards from 2013 to 2014 in northern Gyeongbuk province, Korea. Typical anthracnose with advanced symptoms was observed in all apple orchards studied. Of late, static fruit spot symptoms are being observed in apple orchards. A small lesion, which does not expand further and remains static until the harvesting season, is observed at the beginning of fruit growth period. In our study, static symptoms, together with the typical symptoms, were observed on apples. The isolated fungus was tested for pathogenicity on cv. 'Fuji apple' (fully ripe fruits, unripe fruits, and cross-section of fruits) by inoculating the fruits with a conidial suspension ($10^5$ conidia/ml). In apple inoculated with typical anthracnose fungus, the anthracnose symptoms progressed, and dark lesions with salmon-colored masses of conidia were observed on fruit, which were also soft and sunken. However, in apple inoculated with fungi causing static symptoms, the size of the spots did not increase. Interestingly, the shape and size of the conidia and the shape of the appressoria of both types of fungi were found to be similar. The conidia of the two types of fungi were straight and cylindrical, with an obtuse apex. The culture and morphological characteristics of the conidia were similar to those of C. gloeosporioides (5). The conidia of C. gloeosporioides germinate and form appressoria in response to chemical signals such as host surface wax and the fruitripening hormone ethylene (3). In this study, the spores started to germinate 4 h after incubation with an ethephon suspension. Then, the germ tubes began to swell, and subsequently, differentiation into appressoria with dark thick walls was completed by 8 h. In advanced symptoms, fungal spores of virtually all the appressoria formed primary hyphae within 16 h. However, in the static-symptom fungus spores, no primary hyphae formed by 16 h. The two types of isolates exhibited different growth rates on medium containing apple pectin, Na polypectate, or glucose as the sole carbon. Static-symptom fungi had a >10% reduction in growth (apple pectin, 14.9%; Na polypectate, 27.7%; glucose, 10.4%). The fungal isolates were also genetically characterized by sequencing. ITS regions of rDNA, chitin synthase 1 (CHS1), actin (ACT), and ${\beta}$-tubulin (${\beta}t$) were amplified from isolates using primer pairs ITS 1 and ITS 4 (4), CHS-79F and CHS-354R, ACT-512F and ACT-783R, and T1 and ${\beta}t2$ (5), respectively. The resulting sequences showed 100% identity with sequences of C. gloeosporioides at KC493156, and the sequence of the ${\beta}$t gene showed 100% identity with C. gloeosporioides at JX009557.1. Therefore, sequence data from the four loci studied proves that the isolated pathogen is C. gloeosporioides. We also performed random amplified polymorphic DNA-PCR, which showed clearly differentiated subgroups of C. gloeosporioides genotypes. The clustering of these groups was highly related to the symptom types of the individual strains.

  • PDF