• Title/Summary/Keyword: cross flow velocity

Search Result 548, Processing Time 0.021 seconds

Uniformity Prediction of Mist-CVD Ga2O3 Thin Film using Particle Tracking Methodology (입자추적 유동해석을 이용한 초음파분무화학기상증착 균일도 예측 연구)

  • Ha, Joohwan;Park, Sodam;Lee, Hakji;Shin, Seokyoon;Byun, Changwoo
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.3
    • /
    • pp.101-104
    • /
    • 2022
  • Mist-CVD is known to have advantages of low cost and high productivity compared to ALD and PECVD methods. It is capable of reacting to the substrate by misting an aqueous solution using ultrasonic waves under vacuum-free conditions of atmospheric pressure. In particular, Ga2O3 is regarded as advanced power semiconductor material because of its high quality of transmittance, and excellent electrical conductivity through N-type doping. In this study, Computational Fluid Dynamics were used to predict the uniformity of the thin film on a large-area substrate. And also the deposition pattern and uniformity were analyzed using the flow velocity and particle tracking method. The uniformity was confirmed by quantifying the deposition cross section with an FIB-SEM, and the consistency of the uniformity prediction was secured through the analysis of the CFD distribution. With the analysis and experimental results, the match rate of deposition area was 80.14% and the match rate of deposition thickness was 55.32%. As the experimental and analysis results were consistent, it was confirmed that it is possible to predict the deposition thickness uniformity of Mist-CVD.

Estimating Critical Stream Power by the Distribution of Gravel-bed Materials in the Meandering River (만곡하천의 자갈하상재료 분포에 따른 한계수류력 평가)

  • Shin, Seung-Sook;Park, Sang-Deok;Lee, Seung-Kyu;Ji, Min-Gyu
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.151-163
    • /
    • 2012
  • The distribution of gravel-bed materials in mountainous river is formed by the process of deposition and transportation of sediment responding to stream power of the latest flood that is over the certain scale. The particle size of bed material was surveyed in the longitudinal points of river and detail points of a specific meandering section and used to estimate the critical velocity and stream power. Yang's critical unit stream power and Bagnold's critical stream power for gravel-bed materials increased with the distance from downstream to upstream. Dimensionless shear stress based on the designed flood discharge in Shields diagram was evaluated that the gravel-bed materials in most survey points may be transported as form of bedload. The mean diameter in the meandering section was the biggest size in first water impingement point of inflow water from upstream and the second big size in second water impingement point by reflection flow. The mean diameters were relatively the small sizes in points right after water impingement. The range of mean critical velocity was 0.77~2.60 m/s and critical unit stream power was big greatly in first water impingement point. The distribution of critical stream power, range of 7~171 $W/m^2$, was shown that variation in longitudinal section was more obvious than that of cross section and estimated that critical stream power may be affected greatly in first and second water impingement point.

An Assessment on the Hydraulic Characteristics of a Multi-dimensional Model in Response to Measurement Resolution and Spatial Interpolation Methods (지형자료의 해상도와 공간보간기법에 따른 다차원 수리모형의 유출 특성 평가)

  • Ahn, Jung-Min;Park, In-Hyeok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.1
    • /
    • pp.43-51
    • /
    • 2012
  • Due to the increasing demand to utilize water fronts and water resource effectively, a multi-dimensional model that provides detailed hydraulic characteristics is required in order to improve the decision making process. An EFDC model is a kind of multi-dimension model, and it requires detailed 3D (3-dimensional) terrain in order to simulate the hydraulic characteristics of stream flow. In the case of 3D terrain creation, especially river reaches, measurement resolution and spatial interpolation methods affect the detailed 3D topography which uses input data for EFDC simulation. Such results make hydraulic characteristics to be varied. This study aims to examine EFDC simulation results depending on the 3D topographies derived by separate measurement resolution and spatial interpolation methods. The study area is at the confluence of the Nakdong and Kuemho Rivers and the event rain implemented was Typhoon Ewiniar in 2006. As a result, in the case of the area-elevation curve, the difference by means of the interpolation methods was significant when applying the same measurement resolution, except at 160m resolution. Furthermore, when the measurement resolution was 80m or above, the difference in a cross-section was occurred. Meanwhile, the water level changes between interpolation methods were insignificant by the measurement resolution except when the Kriging method was used for the 160m measurement data. Velocity changes emerged according to the interpolation methods when measurement resolution was 80m or above and the Kriging method resulted in a velocity that had a considerable gap in relation to the results from other methods at a measurement resolution of 160m.

Characteristics of Flux Decline in Microfiltration Capillary Membrane of Bentonite Colloidal Suspensions (정밀여과 모세관 막을 이용한 벤토나이트 콜로이드 현탁액의 투과유속 감소특성)

  • Nam Suk-Tae;Han Myeong-Jin
    • Membrane Journal
    • /
    • v.15 no.1
    • /
    • pp.52-61
    • /
    • 2005
  • Permeate flux decline in a microfiltration was analyzed by measuring the permeability of bentonite colloidal solution through polyethylene capillary membranes. The flux decline with time was due to the growth of cake layer on the membrane surface and to the pore blocking by particles. As the time approaches to steady state, the permeate flux is almost controlled by the cake filtration model. Faster flux decline at high trans-membrane pressure was attributed to the formation of denser packed cake layer and pore blocking. The ratio of permeate flux to the initial permeate flux, J/J₁, decreased with increasing the trans-membrane pressure, from 45% for 0.5 kg/sub f//㎠ to 38% for 2.0 kg/sub f//㎠. In comparing the ratio of each fouling component to the total fouling for the 0.5 kg/sub f//㎠ TMP condition, complete blocking was 23.4%, standard blocking was about 14.6% and cake filtration was 62.0%, respectively. Permeate flux through the membrane increases with cross flow velocity, and the effect of the variation of velocity is more significant at 1.0 kg/sub f//㎠ rather than at 2.0 kg/sub f//㎠ of the operation pressure. Permeate flux for the membrane having the average pore diameter of 0.34 ㎛ was higher than that for the membrane of 0.24 ㎛ pore size, with the higher flux with the low concentration of feed. On the operation using the membrane of 0.34 ㎛ pore, the pore blocking in the low concentration of 200 ppm is negligible relative to the pore blocking in the 1000 ppm feed.

Flow Resistance and Modeling Rule of Fishing Nets 4. Flow Resistance of Trawl Nets (그물어구의 유수저항과 모형수칙 4. 트롤그물의 유수저항)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.691-699
    • /
    • 1997
  • In order to find out the properties in flow resistance of trawlR=1.5R=1.5\;S\;v^{1.8}\;S\;v^{1.8} nets and the exact expression for the resistance R (kg) under the water flow of velocity v(m/sec), the experimental data on R obtained by other, investigators were pigeonholed into the form of $R=kSv^2$, where $k(kg{\cdot}sec^2/m^4)$ was the resistance coefficient and $S(m^2)$ the wall area of nets, and then k was analyzed by the resistance formular obtained in the previous paper. The analyzation produced the coefficient k expressed as $$k=4.5(\frac{S_n}{S_m})^{1.2}v^{-0.2}$$ in case of bottom trawl nets and as $$k=5.1\lambda^{-0.1}(\frac{S_n}{S_m})^{1.2}v^{-0.2}$$ in midwater trawl nets, where $S_m(m^2)$ was the cross-sectional area of net mouths, $S_n(m^2)$ the area of nets projected to the plane perpendicular to the water flow and $\lambda$ the representitive size of nettings given by ${\pi}d^2/2/sin2\varphi$ (d : twine diameter, 2l: mesh size, $2\varphi$ : angle between two adjacent bars). The value of $S_n/S_m$ could be calculated from the cone-shaped bag nets equal in S with the trawl nets. In the ordinary trawl nets generalized in the method of design, however, the flow resistance R (kg) could be expressed as $$R=1.5\;S\;v^{1.8}$$ in bottom trawl nets and $$R=0.7\;S\;v^{1.8}$$ in midwater trawl nets.

  • PDF

Evaluation of applicability of linkage modeling using PHABSIM and SWAT (PHABSIM과 SWAT을 이용한 연계모델링 적용성 평가)

  • Kim, Yongwon;Byeon, Sangdon;Park, Jinseok;Woo, Soyoung;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.54 no.10
    • /
    • pp.819-833
    • /
    • 2021
  • This study is to evaluate applicability of linkage modeling using PHABSIM (Physical Habitat Simulation System) and SWAT (Soil and Water Assessment Tool) and to estimate ecological flow for target fishes of Andong downstream (4,565.7 km2). The SWAT was established considering 2 multi purpose dam (ADD, IHD) and 1 streamflow gauging station (GD). The SWAT was calibrated and validated with 9 years (2012 ~ 2020) data of 1 stream (GD) and 2 multi-purpose dam (ADD, IHD). For streamflow and dam inflows (GD, ADD and IHD), R2, NSE and RMSE were 0.52 ~ 0.74, 0.48 ~ 0.71, and 0.92 ~ 2.51 mm/day respectively. As a result of flow duration analysis for 9 years (2012 ~ 2020) using calibrated streamflow, the average Q185 and Q275 were 36.5 m3/sec (-1.4%) and 23.8 m3/sec (0%) respectively compared with the observed flow duration and were applied to flow boundary condition of PHABSIM. The target stream was selected as the 410 m section where GD is located, and stream cross-section and hydraulic factors were constructed based on Nakdong River Basic Plan Report and HEC-RAS. The dominant species of the target stream was Zacco platypus and the sub-dominant species was Puntungia herzi Herzenstein, and the HSI (Habitat Suitability Index) of target species was collected through references research. As the result of PHABSIM water level and velocity simulation, error of Q185 and Q275 were analyzed -0.12 m, +0.00 m and +0.06 m/s, +0.09 m/s respectively. The average WUA (Weighted Usable Area) and ecological flow of Zacco platypus and Puntungia herzi Herzenstein were evaluated 76,817.0 m2/1000m, 20.0 m3/sec and 46,628.6 m2/1000m, 9.0 m3/sec. This results indicated Zacco platypus is more adaptable to target stream than Puntungia herzi Herzenstein.

Estimation of ecological flow and fish habitats for Andong Dam downstream reach using 1-D and 2-D physical habitat models (1차원 및 2차원 물리서식처 모형을 활용한 안동댐 하류 하천의 환경생태유량 및 어류서식처 추정)

  • Kim, Yongwon;Lee, Jiwan;Woo, Soyoung;Kim, Soohong;Lee, Jongjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1041-1052
    • /
    • 2022
  • This study is to estimate the optimal ecological flow and analysis the spatial distribution of fish habitat for Andong dam downstream reach (4,565.7 km2) using PHABSIM (Physical Habiat Simulation System) and River2D. To establish habitat models, the cross-section informations and hydraulic input data were collected uisng the Nakdong river basic plan report. The establishment range of PHABSIM was set up about 410.0 m from Gudam streamflow gauging station (GD) and about 6.0 km including GD for River2D. To select representative fish species and construct HSI (Habitat Suitability Index), the fish survey was performed at Pungji bridge where showed well the physical characteristics of target stream located downstream of GD. As a result of the fish survey, Zacco platypus was showed highly relative abundance resulting in selecting as the representative fish species, and HSI was constructed using physical habitat characteristics of the Zacco platypus. The optimal range of HSI was 0.3~0.5 m/s at the velocity suitability index, 0.4~0.6 m at the depth suitability index, and the substrate was sand to fine gravel. As a result of estimating the optimal ecological flow by applying HSI to PHABSIM, the optimal ecological flow for target stream was 20.0 m3/sec. As a result of analysis two-dimensional spatial analysis of fish habitat using River2D, WUA (Weighted Usable Area) was estimated 107,392.0 m2/1000 m under the ecological flow condition and it showed the fish habitat was secured throughout the target stream compared with Q355 condition.

A Experimental Study on Exclusion Ability of Riprap into Bypass Pipe (저층수 배사관 내 유입된 사석 배출능력에 대한 연구)

  • Jeong, Seok Il;Lee, Seung Oh
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.37 no.1
    • /
    • pp.239-246
    • /
    • 2017
  • There are various transversal structures (small dams or drop structures) in median and small streams in Korea. Most of them are concrete structures and it is so hard to exclude low-level water. Unless drainage valves and/or gates would not be installed near bottom of bed, sediment from upstream should be deposited and also contaminants attached to the sediments would devastatingly threaten the water quality and ecosystem. One of countermeasures for such problem is the bypass pipe installed underneath the transversal structure. However, there is still issued whether it would be workable if the gravels and/or stones would roll into and be not excluded. Therefore, in this study, the conditions to exclude the rip stone which enter into the bypass pipe was reviewed. Based on sediment transport phenomenon, the behavior of stones was investigated with the concepts from the critical shear stress of sediment and d'Alembert principle. As final results, the basis condition (${\tau}_c{^*}$) was derived using the Lagrangian description since the stones are in the moving state, not in the stationary state. From hydraulic experiments the relative velocity could be obtained. In order to minimize the scale effect, the extra wide channel of 5.0 m wide and 1.0 m high was constructed and the experimental stones were fully spherical ones. Experimental results showed that the ratio of flow velocity to spherical particle velocity was measured between 0.5 and 0.7, and this result was substituted into the suggested equation to identify the critical condition wether the stones were excluded. Regimes about the exclusion of stone in bypass pipe were divided into three types according to particle Reynolds number ($Re_p$) and dimensionless critical shear force (${\tau}_c{^*}$) - exclusion section, probabilistic exclusion section, no exclusion section. Results from this study would be useful and essential information for bypass pipe design in transveral structures.

Measurement of Turbulence Properties at the Time of Flow Reversal Under High Wave Conditions in Hujeong Beach (후정해변 고파랑 조건하에서 파랑유속 방향전환점에서 발생하는 난류성분의 측정)

  • Chang, Yeon S.;Do, Jong Dae;Kim, Sun-Sin;Ahn, Kyungmo;Jin, Jae-Youll
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.4
    • /
    • pp.206-216
    • /
    • 2017
  • The temporal distribution of the turbulence kinetic energy (TKE) and the vertical component of Reynolds stresses ($-{\bar{u^{\prime}w^{\prime}}}$) was measured during one wave period under high wave energy conditions. The wave data were obtained at Hujeong Beach in the east coast of Korea at January 14~18 of 2017 when an extratropical cyclone was developed in the East Sea. Among the whole thousands of waves measured during the period, hundreds of regular waves that had with similar pattern were selected for the analysis in order to give three representing mean wave patterns using the ensemble average technique. The turbulence properties were then estimated based on the selected wave data. It is interesting to find out that $-{\bar{u^{\prime}w^{\prime}}}$ has one clear peak near the time of flow reversal while TKE has two peaks at the corresponding times of maximum cross-shore velocity magnitudes. The distinguished pattern of Reynolds stress indicates that vertical fluxes of such properties as suspended sediments may be enhanced at the time when the horizontal flow direction is reversed to disturb the flows, supporting the turbulence convection process proposed by Nielsen (1992). The characteristic patterns of turbulence properties are examined using the CADMAS-SURF Reynolds-Averaged Navier-Stokes (RANS) model. Although the model can reasonably simulate the distribution of TKE pattern, it fails to produce the $-{\bar{u^{\prime}w^{\prime}}}$ peak at the time of flow reversal, which indicates that the application of RANS model is limited in the prediction of some turbulence properties such as Reynolds stresses.

Flow Resistance and Modeling Rule of Fishing Nets 5. Total Resistance of Bottom Trawl Nets Subjected Simultaneously to the Water Flow and the Bottom Friction (그물어구의 유수저항과 모형수칙 5. 저층 트롤그물의 예망저항)

  • KIM Dae-An
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.700-707
    • /
    • 1997
  • In order to express exactly the total resistance of bottom trawl nets subjected simultaneously to the water flow and the bottom friction, the influence of frictional force was added to the formular for the flow resistance of trawl nets obtained by previous papev and the experimental data obtained by other investigators were analyzed by the formula. The analyzation produced the total resistance R (kg) expressed as $$R=4.5(\frac{S_n}{S_m})^{1.2}S\;v^{-1.8}+20(Bv)^{1.1}$$ where $S(m^2)$ was the wall area of nets, $S_m\;(m^2)$ the cross-sectional area of net mouths, $S_n\;(m^2)$ the area of nets projected to the plane perpendicular to the water flow, B (m) the made-up circumference at the fore edge of bag parts, and v(m/sec) the dragging velocity. From the viewpoint that expressing R in the form of $R=kSv^2$ was a usual practice, however, the resistant coefficient $k(kg{\cdot}sec^2/m^4)$ was compared with the factors influencing it by reusing the experimental data. The comparison gave that the coefficient k might be expressed approximately as a function of BL only and so the resistance R (kg) as $$R=18{\alpha}B^{0.5}L\;v^{1.5}$$ where L (m) was the made-up total length of nets and $\alpha=S/BL$. But the values of a in the nets did not deviate largely from their mean, 0.48, for all the nets and so the general expression of R (kg) for all the bottom trawl nets could be written as $$R=9\;B^{0.5}\;L\;v^{1.5}$$.

  • PDF