• Title/Summary/Keyword: cross cylinder test

Search Result 42, Processing Time 0.025 seconds

Determination of the Strouhal number based on the aerodynamic behavior of rectangular cylinders

  • Choi, Chang Koon;Kwon, Dae Kun
    • Wind and Structures
    • /
    • v.3 no.3
    • /
    • pp.209-220
    • /
    • 2000
  • The Strouhal number is an important nondimensional number which is explanatory of aerodynamic instability phenomena. It takes on the different characteristic constant value depending upon the cross-sectional shape of the body being enveloped by the flow. A number of investigations into this subject, especially on the drag test, surface pressure test and hot-wire test, have been carried out under the fixed state of the body in the past. However, almost no investigations concerning the determination of the St on wind-induced vibration of the body have been reported in the past even though the aerodynamic behavior of the body is very important because the construction of wind-sensitive structures is recently on the sharp increase. Based on a series of wind tunnel tests, this paper addresses a new method to determine the Strouhal number of rectangular cylinder in the uniform flow. The central idea of the proposed method is that the Strouhal number can be obtained directly by the aerodynamic behaviors of the body through wind-induced vibration test. The validity of proposed method is evaluated by comparing with the results obtained by previous studies in three B/Ds at attack angle $0^{\circ}$ and a square cylinder with various attack angles. The values and trends of the proposed Strouhal numbers are in good agreements with values of previous studies. And also, the Strouhal numbers of B/D=1.5 and 2.0 with various attack angles are obtained by the proposed method and verified by other method. This proposed method is as good as any other previous methods to obtain the Strouhal number.

Development of a Recursive Local-Correlation PIV Algorithm and Its Performance Test

  • Daichin Daichin;Lee Sang Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2001.12a
    • /
    • pp.75-85
    • /
    • 2001
  • The hierarchic recursive local-correlation PIV algorithm with CBC(correlation based correction) method was developed to increase the spatial resolution of PIV results and to reduce error vectors. This new algorithm was applied to the single-frame and double-frame cross-correlation PIV techniques. In order to evaluate its performance, the recursive algorithm was tested using synthetic images, PIV standard images from Visualization Society of Japan, real flows including ventilation flow inside a vehicle passenger compartment and wake behind a circular cylinder with rib let surface. As a result, most spurious vectors were suppressed by employing CBC method. In addition, the hierarchical recursive correlation algorithm improved largely the sub-pixel accuracy of PIV results by decreasing the interrogation window size, increasing spatial resolution significantly.

  • PDF

Study on Prediction of Compressive Strength of Concrete based on Aggregate Shape Features and Artificial Neural Network (골재의 형상 특성과 인공신경망에 기반한 콘크리트 압축강도 예측 연구)

  • Jeon, Jun-Seo;Kim, Hong-Seop;Kim, Chang-Hyuk
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.135-140
    • /
    • 2021
  • In this study, the concrete aggregate shape features were extracted from the cross-section of a normal concrete strength cylinder, and the compressive strength of the cylinder was predicted using artificial neural networks and image processing technology. The distance-angle features of aggregates, along with general aggregate shape features such as area, perimeter, major/minor axis lengths, etc., were numerically expressed and utilized for the compressive strength prediction. The results showed that compressive strength can be predicted using only the aggregate shape features of the cross-section without using major variables. The artificial neural network algorithm was able to predict concrete compressive strength within a range of 4.43% relative error between the predicted strength and test results. This experimental study indicates that various material properties such as rheology, and tensile strength of concrete can be predicted by utilizing aggregate shape features.

The Study of Accommodation Assessment in Binocular Functional Test (양안시검사의 조절평가 연구)

  • Cho, Young-Rae;Park, Hyun-Ju
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.12 no.1
    • /
    • pp.61-67
    • /
    • 2007
  • The binocular functional test was performed in test of both accommodation and convergence. The balance of accommodation and convergence was important. Objects were 100 adults in 18-36 years old ages. The used apparatus was vision tester(Shinnippon VT10)and visual chart(Shinnippon CT30). Accommodative lag test by fused cross cylinder were that in case of high 39.0%, in case of low 14.0%. Negative relative accommodation were that in case of high 23.0%, in case of low 38.0%. Positive relative accommodation were that in case of high 29.0%, in case of low 23.0%. In 18% were case of low accommodation.

  • PDF

An Analytical and Experimental Study on the Thermal Shroud Effect to Minimize Thermal Deformation of a High L/D Ratio Cylinder (장축 실린더의 열변형 최소화를 위한 차열관 효과 해석 및 실험 연구)

  • Ahn, Sang-Tae
    • The KSFM Journal of Fluid Machinery
    • /
    • v.10 no.5
    • /
    • pp.54-63
    • /
    • 2007
  • A barrel is a high length-to-diameter ratio cylinder that is influenced by environmental factors such as sunlight, precipitation, wind and clouds. Cross-barrel temperature differences caused by uneven heating or cooling lead to thermal deformation that degrades accuracy. Therefore, a barrel is covered by thermal shrouds to minimize the type of thermal deformation, "fall-of-shot". In this paper, an analytical and experimental study is presented to design the thermal shrouds for a gun barrel and to evaluate the thermal shroud effect. First, an analytical study on the thermal shroud effect to minimize thermal deformation of a gun barrel by sunlight and wind is performed. The coupled analysis of thermal fluid dynamics of the air flow between a barrel and thermal shrouds and thermal stresses of a barrel Is performed to clarify both the thermal shroud effect and the drift in gun muzzle orientation by thermal deformation. Second, experiments are carried out to test and evaluate the thermal shroud effect on the performance of a gun barrel. The drift in gun muzzle orientation against the solar radiation is confirmed by the experiments, and the results well agree with the analytical estimation. Third, three principal design factors that are presumed to have an effect on the performance of the thermal shrouds are also analyzed; sorts of shroud materials, wall-thickness of thermal shrouds, and distance of the gap between a barrel and thermal shrouds.

Modified Finite Volume Time Domain Method for Efficient Prediction of Radar Cross Section at High Frequencies

  • Chatterjee, Avijit;Myong, Rho-Shin
    • Journal of electromagnetic engineering and science
    • /
    • v.8 no.3
    • /
    • pp.100-109
    • /
    • 2008
  • The finite volume time domain(FVTD) technique faces serious limitations in simulating electromagnetic scattering at high frequencies due to requirements related to discretization. A modified FVTD method is proposed for electrically large, perfectly conducting scatterers by partially incorporating a time-domain physical optics(PO) approximation for the surface current. Dominant specular returns in the modified FVTD method are modeled using a PO approximation of the surface current allowing for a much coarser discretization at high electrical sizes compared to the original FVTD scheme. This coarse discretization can be based on the minimum surface resolution required for a satisfactory numerical evaluation of the PO integral for the scattered far-field. Non-uniform discretization and spatial accuracy can also be used in the context of the modified FVTD method. The modified FVTD method is aimed at simulating electromagnetic scattering from geometries containing long smooth illuminated sections with respect to the incident wave. The computational efficiency of the modified FVTD method for higher electrical sizes are shown by solving two-dimensional test cases involving electromagnetic scattering from a circular cylinder and a symmetric airfoil.

Spot Welding of Aluminum Alloys Using Servogun (서보건을 이용한 알루미늄 합금의 저항 점용접)

  • 임창식;장희석
    • Journal of Welding and Joining
    • /
    • v.22 no.4
    • /
    • pp.43-49
    • /
    • 2004
  • Conventional method for electrode force application in resistance spot welding(RSW) processes is to use pneumatic cylinder. However, due to its inherent problems in pneumatic power system such as compressibility of air and poor transient response characteristics, new electrode force system with servo control are recently introduced in RSW machine. This machine is called “servogun”. The purpose of this study is to evaluate performance of servogun in case of spot welding of aluminum alloy. Aluminum alloy(A5052) sheets are spot welded using pneumatic gun and servogun. Both results are compared by means of macro cross-section etching test and tensile shear strength test. Numerous previous research have reported nugget with many voids and cracks are not uncommon defects in spot welds with aluminum alloy. The experimental results show similar defects in case of pneumatic gun. In contrast, use of servogun considerably reduced generation of voids and cracks. In case of step-wise increased forging force at the end of welding cycle with servogun, crack-free and void-free nuggets have been observed. The performance of servogun has been also verified by series of tensile shear test. Higher strength values have been achieved with servogun in comparison to that of pneumatic gun.

INTERPRETATION OF POLARIZATION RESPONSES OF URBAN AREA

  • Kang Moon-Kyung;Yoon Wang-Jung;Kim Kwang-Eun;Choi Hyun-Seok
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.534-537
    • /
    • 2005
  • Polarization of the radar wave refers to the ellipticity angle and orientation angle of the polarization ellipse. An evaluation of the polarization response can help understand the scattering mechanisms involved for a particular area of interest or provide information for image classification and algorithm section. C- and L-band polarization responses measured at urban area show the results that the polarization behavior for dihedral comer reflector or short, thin cylinder reflector appears at located in city streets or buildings site which are lined up and the polarization behavior for a large conducting sphere appears at parts of test site particularly river, flat, and vegetated areas. Also, the co- and cross-polarized response graphs and polarimetric parameters are discussed.

  • PDF

Fretting Wear and Friction of lnconel 690 for Steam Generator Tube in Elevated Temperature Water

  • Lee, Young-Ze;Lim, Min-Kyu;Oh, Se-Doo
    • KSTLE International Journal
    • /
    • v.3 no.1
    • /
    • pp.49-53
    • /
    • 2002
  • Inconel 690 for nuclear steam generator tube has more chromium than the conventionally used Inconel 600 in order to increase the corrosion resistance. TD evaluate the tribological characteristics under fretting condition the fretting tests as well as sliding tests were carried out in elevated temperature water environment. Fretting tests of the cross-cylinder type were done under various vibrating amplitudes and applied normal loads in order to measure the friction forces and wear volumes. Also, the conventional sliding tests of pin-en-disk type were carried out to compare the test results. In fretting, the friction was very sensitive to the load and the amplitude. The friction coefficient decreased with increasing load and decreasing amplitude. Also, the wear of Inconel 690 can be predictable using the work rate model. Depending on normal loads and vibrating amplitudes, distinctively different wear mechanisms and of ten drastically different wear rates can occur. It was fecund that the fretting wear coefficients in water were increased as increasing the temperature of water.

Effectiveness of different confining configurations of FRP jackets for concrete columns

  • Moretti, Marina L.
    • Structural Engineering and Mechanics
    • /
    • v.72 no.2
    • /
    • pp.155-168
    • /
    • 2019
  • This paper presents the results of an experimental investigation on the compressive strength of small scale concentrically axially loaded fiber-reinforced polymer (FRP) confined plain concrete columns, with cylinder concrete strength 19 MPa. For columns with circular (150-mm diameter) and square (150-mm side) cross sections wrapped with glass- and carbon-FRP sheets (GFRP and CFRP, respectively) applied with dry lay-up the effect of different jacket schemes and different overlap configurations on the confined characteristics is investigated. Test results indicate that the most cost effective jacket configuration among those tested is for one layer of CFRP, for both types of sections. In square sections the location of the lap length, either in the corner or along the side, does not seem to affect the confined performance. Furthermore, in circular sections, the presence of an extra wrap with FRP fibers parallel to the column's axis enhances the concrete strength proportionally to the axial rigidity of the FRP jacket. The recorded strains and the distributions of lateral confining pressures are discussed. Existing design equations are used to assess the lateral confining stresses and the confined concrete strength making use of the measured hoop strains.