• Title/Summary/Keyword: cross connection

Search Result 331, Processing Time 0.027 seconds

Seismic performance of high-strength steel framed-tube structures with bolted web-connected replaceable shear links

  • Lian, Ming;Cheng, Qianqian;Guan, Binlin;Zhang, Hao;Su, Mingzhou
    • Steel and Composite Structures
    • /
    • v.37 no.3
    • /
    • pp.323-339
    • /
    • 2020
  • In steel framed-tube structures (SFTSs), the plastic hinges at beam-ends cannot be adequately improved because of the large cross sections of spandrel beams, which results in the lower ductility and energy dissipation capacities of traditional SFTSs. To address this drawback, high-strength steel fabricated SFTSs with bolted web-connected replaceable shear links (HSFTS-SLs) have been proposed. In this system, shear links use conventional steel and are placed in the middle of the deep spandrel beams to act as energy dissipative components. In this study, 2/3-scaled HSFTS-SL specimens were fabricated, and cyclic loading tests were carried out to study the seismic performance of both specimens. The finite element models (FEMs) of the two specimens were established and the numerical results were compared with the test results. The results showed that the specimens had good ductility and energy dissipation capacities due to the reliable deformation capacities. The specimens presented the expected failure modes. Using a shorter shear link can provide a higher load-carrying capacity and initial elastic lateral stiffness but induces lower ductility and energy dissipation capacity in HSFTS-SLs. The performance of the specimens was comparable to that of the original sub-structure specimens after replacing shear links. Additionally, the expected post-earthquake recoverability and resilience of the structures could be achieved by replacing shear links. The acceptable residual interstory drift that allows for easy replacement of the bolted web-connected shear link was 0.23%. The bolted web-connected shear links had reliable hysteretic responses and deformation capacities. The connection rotation had a notable contribution to total link rotation. The results of the numerical analysis run for the proposed FEMs were consistent with the test results. It showed that the proposed FEMs could be used to investigate the seismic performance of the HSFTS-SL.

Shear resistance behaviors of a newly puzzle shape of crestbond rib shear connector: An experimental study

  • Chu, Thi Hai Vinh;Bui, Duc Vinh;Le, Van Phuoc Nhan;Kim, In-Tae;Ahn, Jin-Hee;Dao, Duy Kien
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1157-1182
    • /
    • 2016
  • A newly puzzle shape of crestbond rib shear connector is a type of ductile perfobond rib shear connector. This shear connector has some advantages, including relatively easy rebar installation and cutting, as well as the higher shear resistance strength. Thus, this study proposed a newly puzzle shape of crestbond rib with a "${\mho}$" shape, and its shear resistance behaviors and shear strengths were examined using push-out tests. Five main parameters were considered in the push-out specimens to evaluate the effects of shear resistance parameters such as the dimensions of the crestbond rib, transverse rebars in the crestbond dowel, concrete strength, rebar strength, and dowel action on the shear strength. The shear loading test results were used to compare the changes in the shear behaviors, failure modes, and shear strengths. It was found that the concrete strength and number of transverse rebars in the crestbond rib were significantly related to its shear resistance. After the initial bearing resistance behavior of the concrete dowel, a relative slip occurred in all the specimens. However, its rigid behavior to shear loading decreased the ductility of the shear connection. The cross-sectional area of the crestbond rib was also shown to have a minor effect on the shear resistance of the crestbond rib shear connector. The failure mechanism of the crestbond rib shear connector was complex, and included compression, shear, and tension. As a failure mode, a crack was initiated in the middle of the concrete slab in a vertical direction, and propagated with increasing shear load. Then, horizontal cracks occurred and propagated to the front and rear faces of the specimens. Based on the results of this study, a design shear strength equation was proposed and compared with previously suggested equations.

Histological study of the primo vascular system on the falciform ligament (Falciform ligament(간겸상인대)에서 관찰되는 프리모 조직의 조직학적 특성 연구)

  • Yeon, Sun-Hee;Kwon, O-Sang;Lee, Sae-Bhom;Cho, Seong-Jin;Choi, Kwang-Ho;Lee, Sang-Hun;Choi, Sun-Mi;Ryu, Yeon-Hee
    • Korean Journal of Oriental Medicine
    • /
    • v.18 no.2
    • /
    • pp.131-137
    • /
    • 2012
  • Objectives : Primo vascular system is known to new circulatory system and suggested as a anatomical structure of meridian system. Primo-vessels are present throughout the whole body. The purpose of this study is to identify primo tissues taken from falciform ligament and to compare with organ surface primo tissue, blood vessel and lymph vessel. Methods : Male Sprague-Dawley rats (8weeks old, 250~320g) used for this study. The medial line of the abdomen was dissected and searched for primo tissues in falciform ligament and on the internal organs using stereomicroscope. We performed serial cross section and histological investigations. The tissues were stained with hematoxylin-eosin and Masson's trichrome. Results : 1. The primo tissues attached on the falciform ligament had white color and length of 5~8mm. 2. We could observe primo tissues are classified with ligament tissues. 3. Histologically, primo tissue on falciform ligament and organ surface primo tissue could be considered same tissue. Conclusions : In this study, we observed primo tissue discovered on the falciform ligament. And we also histologically compared such discovered primo tissue with organ surface primo tissue. Consequently, we could consider that two tissues have histological similarity and possibility of connection in one network system.

A Study of Structural Performance of Self-Drilling Screw Connections (직결나사 연결 접합부에 관한 구조성능평가 연구)

  • Park, K.Y.;Jeon, S.H.;Kim, Y.H.;Choi, S.M.
    • Journal of Korean Society of Steel Construction
    • /
    • v.25 no.5
    • /
    • pp.543-553
    • /
    • 2013
  • As the deep deck plate has the shape of open cross section, It can cause structural problems such as bending torsions due to instability of the section. There are a number of fasteners types which are frequently used on light gage steel diaphragms such as bolts, rivets, welds, and screws. In this study, the structural capacity of the self drilling screw connection between the deep deck and the reinforced cap plate was evaluated by experimental variables such as the arrangement method, numbers of screw, pitch of screw, and head plate thickness.

Stud reinforcement in beam-column joints under seismic loads

  • Abdollahzadeh, Gholamreza;Ghalani, Saeed Eilbeigi
    • Computers and Concrete
    • /
    • v.18 no.3
    • /
    • pp.297-317
    • /
    • 2016
  • Current codes recommend large amounts of shear reinforcement for reinforced concrete beam-column joints that causes significant bar congestion. Increase in congestion of shear reinforcement in joint core (connection zone), leads to increase accomplishment problems. The congestion may also lead to diameter limitations on the beam bars relative to the joint dimensions. Using double headed studs instead of conventional closed hoops in reinforced concrete beam-column joints reduces congestion and ensures easier assembly of the reinforcing cage. The purpose of this research is evaluating the efficiency of the proposed reinforcement. In this way, 10 groups of exterior beam-column joints are modeled. Each group includes 7 specimens by different reinforcing details in their joint core. All specimens are modeled by using of ABAQUS and analyzed subjected to cyclic loading. After verification of analytical modeling with an experimental specimen, 3D nonlinear specimens are modeled and analyzed. Then, the effect of amount and arrangement of headed studs on ductility, performance, ultimate strength and energy absorption has been studied. Based on the results, all joints reinforced with double headed studs represent better performance compared with the joints without shear transverse reinforcement in joints core. The behavior of the former is close to joints reinforced with closed hoops and cross ties according to the seismic design codes. By adjusting the arrangement of double-headed studs, the decrease in ductility, performance, ultimate moment resistant and energy absorption reduce to 2.61%, 0.90%, 0.90% and 1.66% respectively compared with the joints reinforced by closed hoops on the average. Since the use of headed studs reduces accomplishment problems, these amounts are negligible. Therefore, use of double-headed studs has proved to be a viable option for reinforcing exterior beam-column joints.

A Discussion and Analysis of Animation in a Culture and Art Education (문화예술교육에서 애니메이션에 대한 논의 분석)

  • Jo, Jeong-Rae
    • Cartoon and Animation Studies
    • /
    • s.31
    • /
    • pp.29-55
    • /
    • 2013
  • In the contemporary modern society, information and knowledge generate a set of new social values. These changes demand a transformation not only in socio-cultural and educational spheres, but also, specifically, in the field of culture and art education. Culture and Art education emphasizes the integration and cross-discipline of other related fields which have great impact on culture and arts. This study applies theoretical analysis of Animation education in the context of culture and art education. Animation education takes an interdisciplinary approach to integrate various subjects in the field of culture and art education. Animation, as a form of culture and art education, plays an educational role in the social classroom. Animation education should be developed and expanded to become a regular classroom course. The goal of Animation education is to pursue and develop a connection with other educational courses of study. In order to strengthen the role of Animation education, we should first re-structure the pedagogical role of Animation education. Secondly, Animation education needs to become a diversified and popularized education. Third, the cultivation of creative human resources is considered of vital importance to Animation education. Finally, the expansion of infrastructure and the establishment of a comprehensive support system for Animation education has to be established.

Investigation of visible light communication transceiver applicable to both of illumination and wireless communication (조명 및 무선통신이 동시에 가능한 가시광 송수신기에 관한 연구)

  • Song, Seok-Su;Kong, Young-Sik;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.4A
    • /
    • pp.219-226
    • /
    • 2012
  • We investigated the performance of a visible light communication (VLC) transceiver applicable to both of illumination and wireless communication. we considered the visibility of VLC, the easy connection for wireless communication and high-speed transmission and implemented VLC transceiver based on edge-emitting laser diode and silicon photodiode. The proposed VLC transceiver is designated to operate in a full duplex mode at high speed of 120 Mbit/s. The shielding method that is employed as a means to reduce the light cross coupling effect inside the VLC transceiver is proposed and its performance is experimentally measured. We also applied optical antenna to have the larger angle of field of view (FOV) to novel structure of VLC transceiver and examined and analyzed their bit error rate performance, photometric result with respect to the transmission distance, the coverage range and the tilt degree as transmission link characteristic between two transceivers without optical antenna and with optical antenna.

The research regarding an information system risk management process characteristics (정보시스템 위험관리 프로세스 특성에 관한 연구)

  • Kim, Tai-Dal;Lee, Hyung-Won
    • The KIPS Transactions:PartD
    • /
    • v.14D no.3 s.113
    • /
    • pp.303-310
    • /
    • 2007
  • Information system failure is various such as program test unpreparedness, physical facilities for damage prevention unpreparedness from simple software error. Although cross is trifling the result causes vast damage. Recently, became difficult by simple outside security system to solve this problem. Now, synthetic countermove establishment and suitable confrontation connected with danger came in necessary visual point about general Information Technology of enterprise. In connection with, in this paper, various informations and system and control about data that can happen information inside and outside considering integrity for IT resource, solubility, confidentiality within organization studied about special quality to model synthetic Risk Management System that can of course and cope in danger.

An Experimental Study on the Static Load Capacity of T-Type Tension Joints with High Tension Bolt (고장력볼트 T-인장이음의 정적내력에 관한 실험적 연구)

  • Lee, Seung Yong;Choi, Jun Hyeok;Kim, Kyong Tae
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.1
    • /
    • pp.53-61
    • /
    • 2015
  • The tension type joint is a mechanically very efficient connection method, as it directly uses the load capacity of base metal or high tension bolt, the reduction of the number of drilling hole and fastening and the fatigue resistance. It is applied to the joint of girder and cross beam, horizontal joints of towers, beam to column joints, the secondary member joints of deck floor ends, and brackets. In this paper, static load tests for the T-type tension joint were conducted to investigate the structural behavior of the joint. The parameters were bolt diameter, flange thickness, and the reduction of clamping force of the joint. The failure modes and load capacity of joints and the effects of flange thickness, bolt diameter and clamping force were investigated.

Experimental Study on Double Skin Composite Walls Subjected to Cyclic Loading (주기하중을 받는 이중강판합성벽의 실험연구)

  • Eom, Tae Sung;Park, Hong Gun;Kim, Jin Ho;Chang, In Hwa
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.289-301
    • /
    • 2008
  • Double skin composite (DSC) wall is a structural wall that is filed with concrete between two steel plate skins connected by tie bars. This type of wall was developed to enhance the structural performance of wall, to reduce wall thickness, and to enhance constructibility, eliminating the use of formwork and re-bars. In this study, cyclic tests were performed to investigate the inelastic behavior and earthquake resistance of isolated and coupled DSC walls with rectangular and T-shapedcross-sections. The DSC walls showed stable cyclic behaviors, exhibiting excellent energy dissipation capacity. The te st specimens failed by the tensile fracture of welded joints at the wall base and coupling beam and by the severe local buckling of the steel plate. The deformation capacity of the walls varied with the connection details at the wall base and their cross-sectional shapes. The specimens with well-detailed connections at the wall base showed relatively god deformation capacity ranging from 2.0% to 3.7% drift ratio. The load-carrying capacities of the isolated and coupled wall specimens were evaluated considering their inelastic behavior. The results were compared with the test results.