• Title/Summary/Keyword: crop load

Search Result 93, Processing Time 0.025 seconds

Efficiency of the Non-structural BMPs with Reduced Rainfall Runoff (강우 유출수를 이용한 비구조적 BMPs의 저감효율 분석)

  • Jeon, Je Hong;Won, Chul Hee;Shin, Min Hwan;Shin, Jae Young;Lee, Su In;Yu, Na Young;Ju, So Hee;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.5
    • /
    • pp.61-67
    • /
    • 2015
  • Effect of tillage on time of initial runoff, runoff coefficient, NPS pollution load, soil erosion and crop productivity were studied. Eight runoff plots of $5{\times}30m$ on loamy sand field that were 4 respective plots of 3 % and 8% slope were prepared. Treatment included conventional tillage (CT) and no-till (NT). Time of initial runoff from NT retarded between 247~261 % compared with that from CT. Under 3% slope, runoff coefficient in NT was 63.5 % lower than that in CT. The reduction under 8 % slope was 61.7 %. Differences in runoff reduction between 3% and 8% plots were not significant. NT could reduce more than 60 % of NPS pollution and between 50~85 % of sediment if compared with CT. Productivity of NT was also shown that it was not lower than that of CT. It was expected that the results could be used as a fundamental data for estimating a reduction load in Korea TMDL from a no-till BMP on loamy sand agricultural fields.

Effect of SRI Water Management on the Reduction of Greenhouse-gas Emissions and Irrigation Water Supply in Paddy (논에서 SRI 물관리 방법에 의한 온실가스와 관개용수 저감효과 분석)

  • Seo, Jiyeon;Park, Baekyung;Park, Woonji;Lee, Suin;Choi, Yonghun;Shin, Minhwan;Choi, Joongdae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.1
    • /
    • pp.79-87
    • /
    • 2018
  • Water management impacts both methane ($CH_4$) and nitrous oxide ($N_2O$) emissions from rice paddy fields. Although irrigation is one of the most important methods for reducing $CH_4$ emission in rice production systems it can also $N_2O$ emissions and reduce crop yields. A feasibility study on the system of rice intensification (SRI) methods with respect to irrigation requirements, greenhouse gas (GHG) emissions was conducted for either 2 or 3 years depending on the treatment in Korea. The SRI methods (i.e. SRI and midsummer drainage (MD) with conventional practice (CT)) reduced the irrigation requirement by 49.0 and 22.0 %, respectively. Global warming contribution of GHG to different depending on the type of GHG. Therefore, the emission of $CH_4$ and $N_2O$ shall be converted to Global Warming Potential (GWP). The GHG emission from the conventional practice with midsummer drainage (MD) and the SRI plots, in GWP were reduced by 49.1 and 77.1 %, respectively. Application of SRI water management method could help to improve Korea's water resources and could thus contribute to mitigation of the negative effects of global warming.

Effects of Small Scale Post-Harvest Facility and Hygiene Education on the Level of Microbial Safety in Korean Leeks Production (영양부추 생산농가의 소규모 수확후 처리시설 적용과 위생교육에 따른 미생물학적 안전성 향상 효과)

  • Kim, Se-Ri;Kim, Jin-Bae;Lee, Hyo-Sup;Lee, Eun-Sun;Kim, Won-Il;Ryu, Song-Hee;Ha, Jihyung;Kim, Hwang-Yong;Ryu, Jae-Gee
    • Journal of Food Hygiene and Safety
    • /
    • v.30 no.3
    • /
    • pp.249-257
    • /
    • 2015
  • The purposes of this study were to develop a small scale post-harvest facility, and consequently to evaluate the effects of applying the facility along with hygiene education on the level of microbial safety in Korean leeks production. A total of 135 samples were collected at three Korean leeks farms in Yangju, Gyeonggi province. Food safety indicators (Aerobic plate count (APC), coliform count, and Escherichia coli) and foodborne pathogens (E. coli O157:H7, Salmonella spp., Staphylococcus aureus, Listeria monocytogenes, and Bacillus cereus) on/in the samples were assessed. The microbial load measured as APC with harvesting tools such as comb, chopping board, and knife, at the farms where the small scale post-harvest facility had been operated (Farms A and B) was lower than that at another farm having no post-harvest facility (Farm C) by 1.44~2.33 log CFU / $100cm^2$. Moreover, the chopping board from Farm C was observed being contaminated with B. cereus at 6.03 log CFU / $100cm^2$. The coliform counts from the samples increased by 0.57~1.89 log CFU/g after leeks was submerged in ground water for washing. E. coli was recovered from leeks, soil, and the ground water used in the washing process, while no E. coli O157:H7, Salmonella spp., and L. monocytogenes was detected. Our results indicated that the small scale post-harvest facility developed in this study as well as the hygiene education played an important role in enhancing the level of microbial food safety in the leeks production environment. However, a disinfection technique could be needed during the washing step in order to prevent a potential contamination.

On-the-go Soil Strength Profile Sensor to Quantify Spatial and Vertical Variations in Soil Strength

  • Chung, Sun-Ok;Sudduth, Kenneth A.
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.39-46
    • /
    • 2005
  • Because soil compaction is a concern in crop production and environmental pollution, quantification and management of spatial and vertical variability in soil compaction for soil strength) would be a useful aspect of site -specific field management. In this paper, a soil strength profile sensor (SSPS) that could take measurements continuously while traveling across the field was developed and the performance was evaluated through laboratory and field tests. The SSPS obtained data simultaneously at 5 evenly spaced depths up to 50 em using an array of load cells, each of which was interfaced with a soil-cutting tip. Means of soil strength measurements collected in adjacent, parallel transects were not significantly different, confirming the repeatability of soil strength sensing with the SSPS. Maps created with sensor data showed spatial and vertical variability in soil strength. Depth to the restrictive layer was different for different field locations, and only 5 to 16% of the tested field areas were highly compacted.

  • PDF

Characteristics of Pollutants Concentrations at Paddy Field Areas during Irrigation Periods (관개기 광역논에서의 오염물질의 농도 특성)

  • 김진수;오승영;김규성;권순국
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.6
    • /
    • pp.163-173
    • /
    • 2001
  • This study describes the characteristics of concentrations of pollutants such as total nitrogen(T-N), total phosphorous(T-P), and chemical oxygen demand(COD) at paddy areas during 2-year irrigation periods. The most common order in average concentrations of T-P and COD is podded water > irrigation(or drainage) water > percolated water. Most of pollutants concentrations in drainage water are lower than those in irrigation water after early July due to large uptake of pollutants by rice crop and denitrification. The exponential L (load)-Q(discharge) equations for classified irrigation periods are significant at 0.001 level for irrigation and drainage waters. For drainage water, the concentrations of T-N and COD slightly decrease with discharge, while the T-P concentrations slightly increase with discharge.

  • PDF

Algebraic Analysis for Partitioning Root and Stem Lodging in Rice Plant

  • Chang, Jae-Ki;Yeo, Un-Sang;Lee, Jeom-Sig;Oh, Byong-Geun;Kim, Jeong-Il;Yang, Sae-Jun;Ku, Yeon-Chung;Kim, Ho-Yeong;Sohn, Jae-Keun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.6
    • /
    • pp.539-543
    • /
    • 2006
  • Lodging is classified as root lodging caused by the loss of supporting force in the root, bending caused by the deformation of the stem and breaking where the stem breaks down as loads exceeding critical elasticity were applied. This research excluded breaking which is not in a state of equilibrium and tried to partition the level of lodging using an algebraic model in root lodging and stem lodging, or bending. When a vertical load was applied, the deformation of the stem of rice plant showed the form of a quadratic equation. The trace of the panicle neck in the process of lodging was an ellipse-shape. When loading was pure root lodging, the trace of the panicle neck became a circle of which culm length is the radius. When it was a pure stem lodging, the trace of the panicle neck is an ellipse of which major axis is culm length and minor axis is 0.64* culm length. When both stem lodging and root lodging occurred in a natural setting, the partitioning of lodging can be calculated by a formula using eccentricity of an ellipse, S=e*100/0.768(S is the ratio of stem lodging in the whole lodging, e is eccentricity of the ellipse). This method is expected to be useful in simple lodging partitioning. We could also calculate the partitioning of stem lodging and root lodging as units of angles as an accuracy method, by using a straight line calculated by differentiating a quadratic equation of stem deformation at the origin of the coordinates. These two methods for dividing root and stem lodging showed different values. However, each of them showed almost same values with different lodging degree in one plant.

Transferring Calibrations Between on Farm Whole Grain NIR Analysers

  • Clancy, Phillip J.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1210-1210
    • /
    • 2001
  • On farm analysis of protein, moisture and oil in cereals and oil seeds is quickly being adopted by Australian farmers. The benefits of being able to measure protein and oil in grains and oil seeds are several : $\square$ Optimize crop payments $\square$ Monitor effects of fertilization $\square$ Blend on farm to meet market requirements $\square$ Off farm marketing - sell crop with load by load analysis However farmers are not NIR spectroscopists and the process of calibrating instruments has to the duty of the supplier. With the potential number of On Farm analyser being in the thousands, then the task of calibrating each instrument would be impossible, let alone the problems encountered with updating calibrations from season to season. As such, NIR technology Australia has developed a mechanism for \ulcorner\ulcorner\ulcorner their range of Cropscan 2000G NIR analysers so that a single calibration can be transferred from the master instrument to every slave instrument. Whole grain analysis has been developed over the last 10 years using Near Infrared Transmission through a sample of grain with a pathlength varying from 5-30mm. A continuous spectrum from 800-1100nm is the optimal wavelength coverage fro these applications and a grating based spectrophotometer has proven to provide the best means of producing this spectrum. The most important aspect of standardizing NIB instruments is to duplicate the spectral information. The task is to align spectrum from the slave instruments to the master instrument in terms of wavelength positioning and then to adjust the spectral response at each wavelength in order that the slave instruments mimic the master instrument. The Cropscan 2000G and 2000B Whole Grain Analyser use flat field spectrographs to produce a spectrum from 720-1100nm and a silicon photodiode array detector to collect the spectrum at approximately 10nm intervals. The concave holographic gratings used in the flat field spectrographs are produced by a process of photo lithography. As such each grating is an exact replica of the original. To align wavelengths in these instruments, NIR wheat sample scanned on the master and the slave instruments provides three check points in the spectrum to make a more exact alignment. Once the wavelengths are matched then many samples of wheat, approximately 10, exhibiting absorbances from 2 to 4.5 Abu, are scanned on the master and then on each slave. Using a simple linear regression technique, a slope and bias adjustment is made for each pixel of the detector. This process corrects the spectral response at each wavelength so that the slave instruments produce the same spectra as the master instrument. It is important to use as broad a range of absorbances in the samples so that a good slope and bias estimate can be calculated. These Slope and Bias (S'||'&'||'B) factors are then downloaded into the slave instruments. Calibrations developed on the master instrument can then be downloaded onto the slave instruments and perform similarly to the master instrument. The data shown in this paper illustrates the process of calculating these S'||'&'||'B factors and the transfer of calibrations for wheat, barley and sorghum between several instruments.

  • PDF

Influence of M.7 Apple Rootstock on Productivity and Fruit Quality of High Density 'Fuji', 'Hongro' and 'Sansa' Apple Trees (M.7 사과 대목이 고밀식 '후지' , '홍로' , '산사' 사과나무의 생산량 및 과실품질에 미치는 영향)

  • Young Soon Kwon;Jeong-Hee Kim;Dong-Hoon Sagong;Jong Taek Park
    • Korean Journal of Environmental Agriculture
    • /
    • v.42 no.3
    • /
    • pp.239-252
    • /
    • 2023
  • Most apple trees in South Korea are grafted on M.9 and M.26 rootstocks; however, these rootstocks are susceptible to fire blight. Although M.7 rootstocks are moderately resistant to fire blight, they tend to exhibit excessive vigor, which is unsuitable for high-density planting, unless weak cultivars are used. This study investigated the vegetative growth, yield, and fruit quality of apple trees grafted onto M.7, M.9, or M.26 rootstocks to assess the feasibility of establishing high-density apple orchards domestically using the M.7 rootstock a period of seven years (1-7 years after planting). Rootstocks were tested using three cultivars with contrasting induced vigor and harvesting times: vigorous and late-maturing 'Fuji,' moderate vigor and middle-maturing 'Hongro,' and low vigor and early-maturing 'Sansa.' The planting density was maintained constant, with 190 trees per 10 a. Primary thinning (leaving only the king fruit on clusters) was performed, whereas secondary thinning (controlling crop load) was not. Vegetative growth, accumulated yield per 10 a, and yield efficiency varied depending on cultivars and rootstocks; however, the cultivars had a more notable effect on fruit quality than the rootstocks. Biennial bearing often occurred in the M.26 rootstock. 'Fuji'/M.7 was overly vigorous for high-density planting. The fruit quality and accumulated yield per 10 a of M.7 were similar to those of M.9 with the 'Hongro' and 'Sansa' cultivars. In particular, 'Hongro'/M.7 did not show tree vigor reduction due to heavy crop load, and the degree of biennial bearing in 'Sansa'/M.7 was not particularly high. These results indicated that high-density apple planting using the M.7 rootstock was achievable using the 'Hongro' and 'Sansa' cultivars.

Effect of Balloonflower and Potato Cultivation on Runoff and NPS Pollution Loads (도라지와 감자 재배가 유출과 비점오염부하에 미치는 영향)

  • Shin, Jae Young;Shin, Min Hwan;Choi, Yong Hoon;Kang, Hyun Woo;Won, Chul Hee;Hwang, Moon Young;Yang, Hee Jung;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.6
    • /
    • pp.89-99
    • /
    • 2012
  • An upland monitoring was conducted for about 4 years with respect to the water and quality of rainfall-runoff. The objective was to characterize of runoff and nonpoint source (NPS) pollution from a sandy field with 4.5 % in slope under balloonflower (2008-2010) and potato (2011) cultivation. Balloonflower was cultivated without any surface cover but potato was grown under plastic mulching. Runoff rate, EMCs and NPS pollution loads were estimated. The first flush effect was evaluated, and the correlation coefficient among the selected water quality indices were analyzed. Average rainfall size was higher by 2.3 mm when balloonflower was cultivated but average runoff rate was higher by 0.02 when potato was cultivated due to the plastic mulching. EMCs monitored from balloonflower field were higher than potato field except SS and TN, but all NPS pollution loads of potato field were 2.1~22.9 times greater than balloonflower field because of larger runoff volume. As a result of first flush effects, balloonflower and potato field were more influenced by increasing of accumulated rainfall and rainfall intensity rather than first flush. In the result of correlation analysis, there were no evident correlations between runoff and water quality indices. However, there were obvious correlations between SS and the other indices except TN. As a result of this study, it was thought that perennial balloonflower crop could help reduce runoff and NPS pollution loads but annual crop with plastic mulching increase them.

Study on the increases in rice yield (수도다수확재배시험)

  • Won-Chai Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.1 no.1
    • /
    • pp.26-31
    • /
    • 1963
  • 1. This experiment was conducted with paddy rice in replicated field plot of clay load in Chung Puk College. This experiment has been intended to find out the suitable polt for increasing the yield of rice plant among the 36 plots which consist of 3 factors; deep plowing, heavy fertilizer and thick planting. 2 According to the standard and the heavy fertilizer applications, spikes and grains per phyung have been compared. It has been find out that the higher yield can be obtain in such plots as these; (1) the plot with standard fertilizer application, 15cm plowing depth and 400 hill per phyung, (2) the plot with two times as much fertilizer application, 30 cm plowing depth and 300 hills per phyung, (3) the plot with three times as much fertilizer application, 30cm plowing depth and 300 hills, or 45cm plowing depth and 400hills per phyung. 3. In the yield of brown rice, there has been significant difference in each main factor: hills per phyung, the plowing depth and the amount of fertilizer, and in the first order interaction; depthxfertilizer, depthxhills and hillsxfertilizer, and in the 2nd order interaction; depthx hillsxfertilizer. 4. In the plots with 30cm plowing depth, thick, planting of 200∼300 hills per phyung and two times as much fertilizer, the yield of rice has been superior to others.

  • PDF