• Title/Summary/Keyword: critical yield stress

Search Result 107, Processing Time 0.026 seconds

A stress model reflecting the effect of the friction angle on rockbursts in coal mines

  • Fan, Jinyang;Chen, Jie;Jiang, Deyi;Wu, Jianxun;Shu, Cai;Liu, Wei
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.21-27
    • /
    • 2019
  • Rockburst disasters pose serious threat to mining safety and underground excavation, especially in China, resulting in massive life-wealth loss and even compulsive closed-down of some coal mines. To investigate the mechanism of rockbursts that occur under a state of static forces, a stress model with sidewall as prototype was developed and verified by a group of laboratory experiments and numerical simulations. In this model, roadway sidewall was simplified as a square plate with axial compression and end (horizontal) restraints. The stress field was solved via the Airy stress function. To track the "closeness degree" of the stress state approaching the yield limit, an unbalanced force F was defined based on the Mohr-Coulomb yield criterion. The distribution of the unbalanced force in the plane model indicated that only the friction angle above a critical value could cause the first failure on the coal in the deeper of the sidewall, inducing the occurrence of rockbursts. The laboratory tests reproduced the rockburst process, which was similar to the prediction from the theoretical model, numerical simulation and some disaster scenes.

Stress Corrosion Cracking Lifetime Prediction of Spring Screw (스프링 체결나사의 응력부식균열 수명예측)

  • Koh, S.K.;Ryu, C.H.
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.7-12
    • /
    • 2004
  • A lifetime prediction of holddown spring screw in nuclear fuel assembly was performed using fracture mechanics approach. The spring screw was designed such that it was capable of sustaining the loads imposed by the initial tensile preload and operational loads. In order to investigate the cause of failure and to predict the stress corrosion cracking life of the screw, a stress analysis of the top nozzle spring assembly was done using finite element analysis. The elastic-plastic finite element analysis showed that the local stresses at the critical regions of head-shank fillet and thread root significantly exceeded than the yield strength of the screw material, resulting in local plastic deformation. Normalized stress intensity factors for PWSCC life prediction was proposed. Primary water stress corrosion cracking life of the Inconel 600 screw was predicted by using integration of the Scott model and resulted in 1.78 years, which was fairly close to the actual service life of the holddown spring screw.

  • PDF

Mechanical Properties of Soil under Repeated Load (반복하중(反復荷重)을 받는 흙의 역학적(力學的) 특성(特性))

  • Chun, Byung Sik;Park, Heung Gyu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.4
    • /
    • pp.113-122
    • /
    • 1990
  • In case of repeated wheel-loads are acted on subbase course material, field test is generally executed to get the design standard, but the study shows dynamic properties of soils especially under repeated loads, which have not been well known to us. We try not only to obtain yield stress and elastic modulus of soil in terms of rheological model interpretation but also to investigate the influence of the repeated loads. Yield stress of soil induces hardening until approaching critical value along with the increase in number of cycle, whereas the change in modulus of elasticity with respect to the number of cycle greatly depends on the strength of repeated stress, if weak in strength of repeated stress, the modulus of elasticity increases along with the number of cycle, while if strong, it tends to decrease.

  • PDF

Structural Strength Analysis due to Rib Thickness of Lower Arm (로워암 리브 두께에 따른 구조 강도 해석)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.126-134
    • /
    • 2014
  • This study investigates the structural strength analysis due to rib thickness of lower arm. At structural analysis, model 1 has the most deformation by comparing three models. As most equivalent stress is shown at the part connected with wheel knuckle, the strength becomes weaker in cases of three models. At fatigue analysis, model 1 becomes most unstabilized among three models. Model 3 has most fatigue life and the next model is model 2. The range of maximum harmonic response frequencies becomes 140 to 175Hz in cases of three models. Because the critical frequency at model 3 becomes highest among three models but the stress exceeds yield stress, model 3 becomes most unstabilized at vibration durability. As models 1 and 2 has less than yield stress, these models become stabilized. Model 2 becomes most favorable by comparing three models at structural, fatigue and vibration analyses. This study result can be effectively utilized with the design of lower arm by investigating prevention against damage and its strength durability.

Analysis of wrinkling formation of anisotropic sheet metal (이방성 판재의 주름 발생 해석)

  • 손영진;박기철;김영석
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.21-27
    • /
    • 1998
  • An analysis for the prediction of wrinkling formation in curved sheets during metal froming is presented. We construct "Wrinkling Limit diagram"(WLD) which represent the combinations of the critical principal stresses for wrinkling formation in curved sheet elements subjected to biaxial plane stress. Here the scheme of plastic bifurcation theory for thin shells based on the Donnell-Mushtari-Vlasov shell theory is used. In this study, the effects of the material variables (yield stress, plastic hardening coefficient, plastic anisotropic parameter, and so on) and sheet geometry on the critical conditions for wrinkling is carried out numerically.merically.

  • PDF

The Effect of the Area Ratio and Change of Location on the Buckling Stress of Two Rectangular Plates Spot-welded (면적비와 위치변화가 점용접된 두 사각평판의 좌굴응력에 미치는 영향)

  • Han, Geun-Jo;An, Seong-Chan;Sim, Jae-Jun;Lee, Hyeon-Cheol;Jang, Hwal-Su
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.12
    • /
    • pp.54-59
    • /
    • 2001
  • The stability of a thin plate structure is very crucial problem which results buckling. Because the buckling strength of thin plates is lower than the yield strength of the material, reinforcement plate must be used to increase the buckling strength. And, in this case, spot welding is commonly used, however, the spot welded joints are practically designed by experimental decisions, so it is Inefficient and has the risks of buckling demolition. In this study, two parameters, such as the area ratio and the distance ratio of spot welding which have influence on the buckling strength, should be chosen. Under compressive and shearing load, the effect of two parameters on the critical stress is discussed.

  • PDF

Analysis of Stress Contour Plot of Implant Depending on Masticatory Force, Length, and Diameter (저작압, 직경, 길이 변화에 따른 임플란트 응력 분포 분석)

  • Nam, Young Jun;Yoon, Seung Hyun
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.240-245
    • /
    • 2016
  • In this paper, stress contour plots depending on length, load, and diameter of the implant are presented. Depending on the condition and amount of cortical bone, process of implanting can be difficult and stress becomes important. Therefore deciding the right length and diameter of implant is critical. When analyzing stress in the implant, Von-mises yield criterion is often used; however, due to hardship of acquiring the actual material property of surrounding bones, simplified model of a implant was adapted in finite element analysis program of EDISON. The result acquired from EDISON program was then compared with results of different research papers.

  • PDF

Influence of climate change on crop water requirements to improve water management and maize crop productivity

  • Adeola, Adeyemi Khalid;Adelodun, Bashir;Odey, Golden;Choi, Kyung Sook
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.126-126
    • /
    • 2022
  • Climate change has continued to impact meteorological factors like rainfall in many countries including Nigeria. Thus, altering the rainfall patterns which subsequently affect the crop yield. Maize is an important cereal grown in northern Nigeria, along with sorghum, rice, and millet. Due to the challenge of water scarcity during the dry season, it has become critical to design appropriate strategies for planning, developing, and management of the limited available water resources to increase the maize yield. This study, therefore, determines the quantity of water required to produce maize from planting to harvesting and the impact of drought on maize during different growth stages in the region. Rainfall data from six rain gauge stations for a period of 36 years (1979-2014) was considered for the analysis. The standardized precipitation and evapotranspiration index (SPEI) is used to evaluate the severity of drought. Using the CROPWAT model, the evapotranspiration was calculated using the Penman-Monteith method, while the crop water requirements (CWRs) and irrigation scheduling for the maize crop was also determined. Irrigation was considered for 100% of critical soil moisture loss. At different phases of maize crop growth, the model predicted daily and monthly crop water requirements. The crop water requirement was found to be 319.0 mm and the irrigation requirement was 15.5 mm. The CROPWAT 8.0 model adequately estimated the yield reduction caused by water stress and climatic impacts, which makes this model appropriate for determining the crop water requirements, irrigation planning, and management.

  • PDF

Drop formation of Carbopol dispersions displaying yield stress, shear thinning and elastic properties in a flow-focusing microfluidic channel

  • Hong, Joung-Sook;Cooper-White, Justin
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.4
    • /
    • pp.269-280
    • /
    • 2009
  • The drop formation dynamics of a shear thinning, elastic, yield stress ($\tau_o$) fluid (Carbopol 980 (poly(acrylic acid)) dispersions) in silicone oil has been investigated in a flow-focusing microfluidic channel. The rheological character of each solution investigated varied from Netwonian-like through to highly non-Newtonian and was varied by changing the degree of neutralization along the poly (acrylic acid) backbone. We have observed that the drop size of these non-Newtonian fluids (regardless of the degree of neutralisation) showed bimodal behaviour. At first we observed increases in drop size with increasing viscosity ratio (viscosity ratio=viscosity of dispersed phase (DP)/viscosity of continuous phase (CP)) at low flowrates of the continuous phases, and thereafter, decreasing drop sizes as the flow rate of the CP increases past a critical value. Only at the onset of pinching and during the high extensional deformation during pinch-off of a drop are any differences in the non-Newtonian characteristics of these fluids, that is extents of shear thinning, elasticity and yield stress ($\tau_o$), apparent. Changes in these break-off dynamics resulted in the observed differences in the number and size distribution of secondary drops during pinch-off for both fluid classes, Newtonian-like and non-Newtonian fluids. In the case of the Newtonian-like drops, a secondary drop was generated by the onset of necking and breakup at both ends of the filament, akin to end-pinching behavior. This pinch-off behavior was observed to be unaffected by changes in viscosity ratio, over the range explored. Meanwhile, in the case of the non-Newtonian solutions, discrete differences in behaviour were observed, believed to be attributable to each of the non-Newtonian properties of shear thinning, elasticity and yield stress. The presence of a yield stress ($\tau_o$), when coupled with slow flow rates or low viscosities of the CP, reduced the drop size compared to the Newtonian-like Carbopol dispersions of much lower viscosity. The presence of shear thinning resulted in a rapid necking event post onset, a decrease in primary droplet size and, in some cases, an increase in the rate of drop production. The presence of elasticity during the extensional flow imposed by the necking event allowed for the extended maintenance of the filament, as observed previously for dilute solutions of linear polymers during drop break-up.

Processing parallel-disk viscometry data in the presence of wall slip

  • Leong, Yee-Kwong;Campbell, Graeme R.;Yeow, Y. Leong;Withers, John W.
    • Korea-Australia Rheology Journal
    • /
    • v.20 no.2
    • /
    • pp.51-58
    • /
    • 2008
  • This paper describes a two-step Tikhonov regularization procedure for converting the steady shear data generated by parallel-disk viscometers, in the presence of wall slip, into a shear stress-shear rate function and a wall shear stress-slip velocity functions. If the material under test has a yield stress or a critical wall shear stress below which no slip is observed the method will also provide an estimate of these stresses. Amplification of measurement noise is kept under control by the introduction of two separate regularization parameters and Generalized Cross Validation is used to guide the selection of these parameters. The performance of this procedure is demonstrated by applying it to the parallel disk data of an oil-in-water emulsion, of a foam and of a mayonnaise.