• Title/Summary/Keyword: critical yield stress

Search Result 106, Processing Time 0.029 seconds

High Temperature Creep Properties of Al-Al4C3-Al2O3 Alloy by Mechanical Alloying

  • Han, Chang-Suk;Seo, Han-Byeol
    • Korean Journal of Materials Research
    • /
    • v.26 no.7
    • /
    • pp.370-375
    • /
    • 2016
  • Tensile tests and creep tests were carried out at high temperatures on an Al-$Al_4C_3$ alloy prepared by mechanical alloying technique. The material contains about 2.0% carbon and 0.9% oxygen in mass percent, and the volume fractions of $Al_4C_3$ and $Al_2O_3$ particles are estimated at 7.4 and 1.4%, respectively, from the chemical composition. Minimum creep rate decreased steeply near two critical stresses, ${\sigma}_{cl}$ (the lower critical stress) and ${\sigma}_{cu}$ (the upper critical stress), with decreasing applied stress at temperatures below 723 K. Instantaneous plastic strain was observed in creep tests above a critical stress, ${\sigma}_{ci}$, at each test temperature. ${\sigma}_{cu}$ and ${\sigma}_{ci}$ were fairly close to the 0.2% proof stress obtained by tensile tests at each test temperature. It is thought that ${\sigma}_{cl}$ and ${\sigma}_{cu}$ correspond to the microscopic yield stress and the macroscopic yield stress, respectively. The lower critical stress corresponds to the local yield stress needed for dislocations to move in the soft region within subgrains. The creep strain in the low stress range below 723 K arises mainly from the local deformation of the soft region. The upper critical stress is equivalent to the macroscopic yield stress necessary for dislocations within subgrains or in subboundaries; this stress can extensively move beyond subboundaries under a stress above the critical point to yield a macroscopic deformation. At higher temperatures above 773 K, the influence of the diffusional creep increases and the stress exponent of the creep rate decreases.

Theoretical models of threshold stress intensity factor and critical hydride length for delayed hydride cracking considering thermal stresses

  • Zhang, Jingyu;Zhu, Jiacheng;Ding, Shurong;Chen, Liang;Li, Wenjie;Pang, Hua
    • Nuclear Engineering and Technology
    • /
    • v.50 no.7
    • /
    • pp.1138-1147
    • /
    • 2018
  • Delayed hydride cracking (DHC) is an important failure mechanism for Zircaloy tubes in the demanding environment of nuclear reactors. The threshold stress intensity factor, $K_{IH}$, and critical hydride length, $l_C$, are important parameters to evaluate DHC. Theoretical models of them are developed for Zircaloy tubes undergoing non-homogenous temperature loading, with new stress distributions ahead of the crack tip and thermal stresses involved. A new stress distribution in the plastic zone ahead of the crack tip is proposed according to the fracture mechanics theory of second-order estimate of plastic zone size. The developed models with fewer fitting parameters are validated with the experimental results for $K_{IH}$ and $l_C$. The research results for radial cracking cases indicate that a better agreement for $K_{IH}$ can be achieved; the negative axial thermal stresses can lessen $K_{IH}$ and enlarge the critical hydride length, so its effect should be considered in the safety evaluation and constraint design for fuel rods; the critical hydride length $l_C$ changes slightly in a certain range of stress intensity factors, which interprets the phenomenon that the DHC velocity varies slowly in the steady crack growth stage. Besides, the sensitivity analysis of model parameters demonstrates that an increase in yield strength of zircaloy will result in a decrease in the critical hydride length $l_C$, and $K_{IH}$ will firstly decrease and then have a trend to increase with the yield strength of Zircaloy; higher fracture strength of hydrided zircaloy will lead to very high values of threshold stress intensity factor and critical hydride length at higher temperatures, which might be the main mechanism of crack arrest for some Zircaloy materials.

The Variation of Yield-Related Traits of the QTL Pyramiding Lines for Climate-resilience and Nutrition Uptake in Rice

  • Joong Hyoun Chin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.14-14
    • /
    • 2022
  • Greenhouse gas emissions are one of the critical factors that drive change in rice cropping systems. Within this changing system, less water irrigation and chemical fertilizer are seriously considered, as well combining precision farming technologies with irrigation control. Water and phosphorus (P) fertilizer are two of the most critical inputs in rice cultivation. Due to the lack of water availability in the system, P fertilizer is not available, especially in acidic soil conditions. Moreover, the various types of abiotic stresses, such as drought, high temperature, salinity, submergence, and limited fertilizer result in significant yield loss in the system. Even in the late stage of growth, the waves caused by diseases and insects make the field more unfruitful. Therefore, agronomists and breeders need to identify the secondary phenotypes to estimate the yield loss of when stress appears. The prediction will be clearer if we have a set of markers tagging the causal variation and the associated precise phenotype indices. Although there have been various studies for abiotic stress tolerance, we still lack functional molecular markers and phenotype indices. This is due to the underlying challenges caused by environmental factors in highly unpredictable regional and yearly environmental conditions in the field system. Pupl (phosphorus uptake 1) is still known as the first QTL associated with phosphorus uptake and have been validated in different field crops. Interestingly, some pyramiding lines of Pupl and other QTLs for other stress tolerances showed preferable phenotypes in the yield. Precise physiological studies with the help of genomics are on-going and some results will be discussed.

  • PDF

Limit speeds and stresses in power law functionally graded rotating disks

  • Madan, Royal;Saha, Kashinath;Bhowmick, Shubhankar
    • Advances in materials Research
    • /
    • v.9 no.2
    • /
    • pp.115-131
    • /
    • 2020
  • Limit elastic speed analysis of Al/SiC-based functionally graded annular disk of uniform thickness has been carried out for two cases, namely: metal-rich and ceramic rich. In the present study, the unknown field variable for radial displacement is solved using variational method wherein the solution was obtained by Galerkin's error minimization principle. One of the objectives was to identify the variation of induced stress in a functionally graded disk of uniform thickness at limit elastic speed using modified rule of mixture by comparing the induced von-Mises stress with the yield stress along the disk radius, thereby locating the yield initiation. Furthermore, limit elastic speed has been reported for a combination of varying grading index (n) and aspect ratios (a/b).Results indicate, limit elastic speed increases with an increase in grading indices. In case of an increase in aspect ratio, limit elastic speed increases up to a critical value beyond which it recedes. Also, the objective was to look at the variation of yield stress corresponding to volume fraction variation within the disk which later helps in material tailoring. The study reveals the qualitative variation of yield stress for FG disk with volume fraction, resulting in the possibility of material tailoring from the processing standpoint, in practice.

Electrorheology of conducting polyaniline-$BaTiO_3$ composite

  • Kim Ji-Hye;Fang Fei Fei;Lee Ki-Bo;Choi Hyoung-Jin
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.103-107
    • /
    • 2006
  • Organic-inorganic composite of polyaniline and barium titanate (PANI-$BaTiO_3$) was synthesized via an in-situ oxidation polymerization of aniline in the presence of barium titanate ($BaTiO_3$) nanoparticles dispersed in an acidic medium. Barium titanate has large electric resistance and relatively high dielectric constant which is one of the essential properties for its electrorheological (ER) applications. The microstructure and composition of the obtained PANI/$BaTiO_3$ composite were characterized by SEM, FT-IR and XRD. In addition, we also employed a rotational rheometer to investigate the rheological performance of the ER fluids based on both pure PANI particle and PANI/$BaTiO_3$ composite. It was found that the composite materials possess much higher yield stresses than the pristine PANI due to unique dielectric properties of the inorganic $BaTiO_3$ particles. Finally, we also examined dynamic yield stress by analyzing its extrapolated yield stress data as a function of electric field strengths. Using the critical electric field strengths deduced, we further found that the universal yield stress equation collapses their data onto a single curve.

Shear-induced structure and dynamics of hydrophobically modified hydroxy ethyl cellulose (hmHEC) in the presence of SDS

  • Tirtaatmadija, Viyada;Cooper-white, Justin J.;Gason, Samuel J.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.4
    • /
    • pp.189-201
    • /
    • 2002
  • The interaction between hydrophobically modified hydroxyethyl cellulose (hmHEC), containing approximately 1 wt% side-alkyl chains of $C_{16}$, and an anionic sodium dodecyl sulphate (SDS) surfactant was investigated. For a semi-dilute solution of 0.5 wt% hmHEC, the previously observed behaviour of a maximum in solution viscosity at intermediate SDS concentrations, followed by a drop at higher SDS concentrations, until above the cmc of surfactant when the solution resembles that of the unsubstituted polymer, was confirmed. Additionally, a two-phase region containing a hydrogel phase and a water-like supernatant was found at low SDS concentrations up to 0.2 wt%, a concentration which is akin to the critical association concentration, cac, of SDS in the presence of hmHEC. Above this concentration, SDS molecules bind strongly to form mixed micellar aggregates with the polymer alkyl side-chains, thus strengthening the network junctions, resulting in the observed increase in viscosity and elastic modulus of the solution. The shear behaviour of this polymer-surfactant complex during steady and step stress experiments was examined In great detail. Between SDS concentrations of 0.2 and 0.25 wt%, the shear viscosity of the hmHEC-polymer complex network undergoes shear-induced thickening, followed by a two-stage shear-induced fracture or break-up of the network. The thickening is thought to be due to structural rearrangement, causing the network of flexible polymers to expand, enabling some polymer hydrophobic groups to be converted from intra- to inter-chain associations. At higher applied stress, a partial local break-up of the network occurs, while at even higher stress, above the critical or network yield stress, a complete fracture of the network into small microgel-like units, Is believed to occur. This second network rupture is progressive with time of shear and no steady state in viscosity was observed even after 300 s. The structure which was reformed after the cessation of shear is found to be significantly different from the original state.

Fracture mechanics analysis of multipurpose canister for spent nuclear fuels under horizontal/oblique drop accidents

  • Jae-Yoon Jeong;Cheol-Ho Kim;Hune-Tae Kim;Ji-Hye Kim;Yun-Jae Kim
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4647-4658
    • /
    • 2023
  • In this paper, elastic-plastic fracture mechanics analysis is performed to determine the critical crack sizes of the multipurpose canister (MPC) manufactured using austenitic stainless steel under dynamic loading conditions that simulate drop accidents. Firstly, dynamic finite element (FE) analysis is performed using Abaqus v.2018 with the KORAD (Korea Radioactive Waste Agency)-21 model under two drop accident conditions. Through the FE analysis, critical locations and through-thickness stress distributions in the MPC are identified, where the maximum plastic strain occurs during impact loadings. Then, the evaluation using the failure assessment diagram (FAD) is performed by postulating an external surface crack at the critical location to determine the critical crack depth. It is found that, for the drop cases considered in this paper, the principal failure mechanism for the circumferential surface crack is found to be the plastic collapse due to dominant high bending axial stress in the thickness. For axial cracks, the plastic collapse is also the dominant failure mechanism due to high membrane hoop stress, followed by the ductile tearing analysis. When incorporating the strain rate effect on yield strength and fracture toughness, the critical crack depth increases from 10 to 20%.

Computer Simulation of Hemispherical Forming Process Texture-based Work hardening and Anisotropy (집합조직 기초 가공경화와 이방성에 의한 반구 성형공정의 전산 시뮬레이션)

  • Sim, J.K.;Keum, Y.T.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.199-202
    • /
    • 2006
  • The hardening and anisotropy based on the crystal plasticity is considered in the numerical simulation of hemispherical sheet forming process to find more realistic simulation results For calculating the yield shear stresses of each crystal, Taylor's model of the crystalline aggregate is employed. The yield stress of crystalline aggregate is computed by averaging the yield stresses of the crystal. The hardening is evaluated by using the Taylor factor and the critical resolved shear stress of the crystal. In addition, by observing the crystallographic texture and slip system, the anisotropy of the sheet is traced during the forming process. The anisotropy and hardening behaviors of the sheet found by the crystal plasticity are described better than those of obtained from the Hill's quadratic criterion based on the continuum plasticity.

  • PDF

Revision of Modified Cam Clay Failure Surface Based on the Critical State Theory (한계 상태 기반 수정 Modified Cam Clay 파괴면)

  • Woo, Sang Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.4
    • /
    • pp.5-15
    • /
    • 2020
  • This paper proposes a revised Modified Cam Clay type failure surface based on the critical state theory. In the plane of the mean effective and von Mises stresses, the original Modified Cam Clay model has an elliptic failure surface which leads the critical-state mean effective stress to be always half of the pre-consolidation mean effective stress without hardening and evolution rules. This feature does not agree with the real mechanical response of clay. In this study, the preconsolidation mean effective stress only reflects the consolidation history of the clay whereas the critical state mean effective stress only relies on the currenct void ratio of clay. Therefore, the proposed failure surface has a distorted elliptic shape without any fixed ratio between the preconsolidation and critical state mean effective stresses. Numerical simulations for various clays using failure surfaces as yield surface provide mechanical responses similar to the experimental data.

Estimation of Nitrogen Uptake and Yield of Tobacco (Nicotiana tobacum L.) by Reflectance Indices of Ground-based Remote Sensors

  • Kang, Seong Soo;Kim, Yoo-Hak;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.3
    • /
    • pp.217-224
    • /
    • 2014
  • Ground-based remote sensing can be used as one of the non-destructive, fast, and real-time diagnostic tools for predicting yield, biomass, and nitrogen stress during growing season. The objectives of this study were: 1) to assess biomass and nitrogen (N) status of tobacco (Nicotiana tabacum L.) plants under N stress using ground-based remote sensors; and 2) to evaluate the feasibility of spectral reflectance indices for estimating an application rate of N and predicting yield of tobacco. Dry weight (DW), N content, and N uptake at the 40th and 50th day after transplanting (DAT) were positively correlated with chlorophyll content and normalized difference vegetation indexes (NDVIs) from all sensors (P<0.01). Especially, Green NDVI (GNDVI) by spectroradiometer and Crop Circle-passive sensors were highly correlated with DW, N content and N uptake. The yield of tobacco was positively correlated with canopy reflectance indices measured at each growth stage (P<0.01). The regression of GNDVI by spectroradiometer on yield showed positively quadratic curve and explained about 90% for the variability of measured yield. The sufficiency index (SI) calculated from data/maximum value of GNDVI at the $40^{th}$ DAT ranged from 0.72 to 1.0 and showed the same positively quadratic regression with N application rate explaining 84% for the variability of N rate. These results suggest that use of reflectance indices measured with ground-based remote sensors may assist in determining application rate of fertilizer N at the critical season and estimating yield in mid-season.