We get a theorem which shows the existence of at least four $2{\pi}$-periodic weak solutions for the bifurcation problem of the Hamiltonian system with the superquadratic nonlinearity. We obtain this result by using the variational method, the critical point theory induced from the limit relative category theory.
We prove the existence of multiple solutions for the fourth order nonlinear elliptic problem with fully nonlinear term. Our method is based on the critical point theory; the variation of linking method and category theory.
Journal of Korean Home Economics Education Association
/
v.31
no.1
/
pp.169-192
/
2019
This study aims to examine the prospecting view of future society from a critical perspective, and to explore the direction of home economics education that can lead to transformation of future society from Habermas's critical theory. For this, Habermas's critical theory was understood, and the direction was explored in which field should act to guide future society when home economics education took a critical science perspective. Direction for praxis of home economics education was explored in both lifeworld and system area of society based on the critical theory that individuals, families and society are mutually beneficial and continue through interactions. The praxis of home economics education from a critical science perspective has been found through examples of IFHE's advocacy and policy participation activities. In conclusion, it supported the reason that home economics education as a critical science should form a social, political and economic system as well as lifeworld with valued human conditions and practice professional activities in academic, daily life and societal areas which will lead to the critical and participatory changes in individual and family life.
Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.
Journal of the Korean Society for Industrial and Applied Mathematics
/
v.12
no.4
/
pp.239-247
/
2008
Let $I{\in}C^{1,1}$ be a strongly indefinite functional defined on a Hilbert space H. We investigate the number of the critical points of I when I satisfies two pairs of Torus-Sphere variational linking inequalities and when I satisfies m ($m{\geq}2$) pairs of Torus-Sphere variational linking inequalities. We show that I has at least four critical points when I satisfies two pairs of Torus-Sphere variational linking inequality with $(P.S.)^*_c$ condition. Moreover we show that I has at least 2m critical points when I satisfies m ($m{\geq}2$) pairs of Torus-Sphere variational linking inequalities with $(P.S.)^*_c$ condition. We prove these results by Theorem 2.2 (Theorem 1.1 in [1]) and the critical point theory on the manifold with boundary.
Kim, Ki-Young;Jeon, Je-Sung;Lee, Jong-Wook;Kim, Je-Hong
Proceedings of the Korean Geotechical Society Conference
/
2008.03a
/
pp.1095-1099
/
2008
Critical state theory involves two state boundary surface. One is Roscoe surface and the other is Hvorslev surface. The shape of these boundary surface was changed because of several parameters : Critical state constant(M), spacing ratio (r) and critical state pore pressure coefficient($\wedge$). As these constants make difference to each model and the way of solution, they may affect the shape of state boundary surface. Specially, spacing ratio (r) is important. On this study, triaxial compression test was performed using remolded weathered mudstone soil and investigated variation of state boundary surface because of spacing ratio. In the results of prediction, critical state point was located highly and the shape of boundary surface was changed more tightly curve as decreasing spacing ratio.
Journal of the Korean Operations Research and Management Science Society
/
v.29
no.1
/
pp.1-16
/
2004
Critical success factors (CSFs) have been replicated and applied in a wide variety of settings for more than two decades. Most previous research on CSF have focused on identifying critical factors, based on the variance theory, in terms of the correlation between individual factor and Information system (IS) success. However, it is unknown how a set of critical factors Influence each other and lead to IS success, which means the process of IS implementation. in this research, we aim to understand how a set of critical factors influence each other and lead to IS success in the context of IS implementation for Customer Relationship Management based on the process theory. This research has implications In explaining a mechanism leading to CRM systems success based on the influencial relationships among the critical factors.
Let $I{\in}C^{1,1}$ be a strongly indefinite functional defined on a Hilbert space H. We investigate the number of the critical points of I when I satisfies one pair of Torus-Sphere variational linking inequality. We show that I has at least two critical points when I satisfies one pair of Torus-Sphere variational linking inequality with $(P.S.)^*_c$ condition. We prove this result by use of the limit relative category and critical point theory on the manifold with boundary.
This paper is concerned with the existence of solutions to the following fractional differential inclusion $$\{-{\frac{d}{dx}}\(p_0D^{-{\beta}}_x(u^{\prime}(x)))+q_xD^{-{\beta}}_1(u^{\prime}(x))\){\in}{\partial}F_u(x,u),\;x{\in}(0,1),\\u(0)=u(1)=0,$$ where $_0D^{-{\beta}}_x$ and $_xD^{-{\beta}}_1$ are left and right Riemann-Liouville fractional integrals of order ${\beta}{\in}(0,1)$ respectively, 0 < p = 1 - q < 1 and $F:[0,1]{\times}{\mathbb{R}}{\rightarrow}{\mathbb{R}}$ is locally Lipschitz with respect to the second variable. Due to the general assumption on the constants p and q, the problem does not have a variational structure. Despite that, here we study it combining with an iterative technique and nonsmooth critical point theory, we obtain an existence result for the above problem under suitable assumptions. The result extends some corresponding results in the literatures.
In this paper, the deflection and buckling analyses of porous nano-composite piezoelectric plate reinforced by carbon nanotube (CNT) are studied. The equations of equilibrium using energy method are derived from principle of minimum total potential energy. In the research, the non-local strain gradient theory is employed to consider size dependent effect for porous nanocomposite piezoelectric plate. The effects of material length scale parameter, Eringen's nonlocal parameter, porosity coefficient and aspect ratio on the deflection and critical buckling load are investigated. The results indicate that the effect of porosity coefficient on the increase of the deflection and critical buckling load is greatly higher than the other parameters effect, and size effect including nonlocal parameter and the material length scale parameter have a lower effect on the deflection increase with respect to the porosity coefficient, respectively and vice versa for critical buckling load. Porous nanocomposites are used in various engineering fields such as aerospace, medical industries and water refinery.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.