• Title/Summary/Keyword: critical temperature (Tc)

Search Result 81, Processing Time 0.028 seconds

Insulation of Winding and Current Lead of the High-Tc Superconducting Magnets for DC Reactor Type SFCL (DC 리액터형 고온초전도한류기용 고온초전도자석의 권선 및 전류리드의 절연)

  • 양성은;배덕권;전우용;김영식;김상현;고태국
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.226-229
    • /
    • 2003
  • Following the successful development of practical high temperature superconducting (HTS) wires, there has been renewed activity in the development of superconducting power equipments. HTS equipments must be operated in the coolant, such as liquid nitrogen (L$N_2$) or cooled by cooler, such as GM-cryocooler to maintain the temperature below critical temperature. In this paper, dielectric strength of some insulating materials, such as epoxy, teflon, and glass fiber reinforced plastic (GFRP) in L$N_2$was measured. Surface breakdown voltage of GFRP which is basic property in design of HTS solenoid coil was measured. Epoxy is a goof insulating material but it is fragile at cryogenic temperature. The multi-layer insulating method of current lead is suggested to compensate this fragile property. It consists of teflon tape layer and epoxy layer fixed with texture. Based on these measurements, the 6.6㎸ class HTS magnet for DC reactor type high-T$_{c}$ superconducting fault current limiter (SFCL) was successfully fabricated and tested.d.

  • PDF

A Study on the Electrical Strength of Insulating Materials for High-Tc Superconducting Devices

  • Bae, Duck Kweon;Kim, Chung-Hyeok;Pak, Min-Sun;Oh, Yong-Cheul;Kim, Jin-Sa;Shin, Cheol-Gee;Lee, Joon-Ung;Song, Min-Jong;Choi, Woon-Shik
    • Transactions on Electrical and Electronic Materials
    • /
    • v.6 no.6
    • /
    • pp.294-300
    • /
    • 2005
  • According to the trend for electric power equipment of high capacity and reduction of its size, the needs for the new high performance electric equipments become more and more important. On of the possible solution is high temperature superconducting (HTS) power application. Following the successful development of practical HTS wires, there have been renewed activities in developing superconducting power equipment. HTS equipments have to be operated in a coolant such as liquid nitrogen ($LN_2$) or cooled by conduction-cooling method such as using Gifford-McMahon (G-M) cryocooler to maintain the temperature below critical level. In this paper, the dielectric strength of some insulating materials, such as unfilled epoxy, filled epoxy, and polyimide in $LN_2$ was analyzed. Epoxy is a good insulating material but fragile at cryogenic temperature. The filled epoxy composite not only compensates for this fragile property but enhances its dielectric strength.

Solubility of Ibuprofen in Supercritical Carbon Dioxide (초임계 이산화탄소를 이용한 Ibuprofen의 용해도 측정)

  • Kim, Young Ae;Chu, Junho;Lim, Jong Sung;Kim, Hwayoung;Lee, Youn-Woo
    • Clean Technology
    • /
    • v.11 no.3
    • /
    • pp.147-152
    • /
    • 2005
  • For estblishing the best technique for the micronization of Ibuprofen using supercritical fluids, the solubility should be known. The solubility of Ibuprofen in supercritical carbon dioxide was measured by observing the cloud point. The cloud point was observed using high pressure equipment equipped a variable volume view cell between temperature of 35, 40 and $45^{\circ}C$. The solubility data was correlated by the Peng-Robinson equation of state Solute physical properties, such as critical temperature (Tc), critical pressure (Pc) and acentric factor (${\omega}$) were estimated by the some group contribution method. As pressure was increased, the solubility increased at constant temperature. The retrograde phenomenon by a solute vapor pressure and a density of solvent was observed at the pressure of around 150bar. It was found that $CO_2$ can be used as a supercritical solvent in micronization of ibuprofen by RESS.

  • PDF

Fabrication and Current Transport Properties of $TmBa_{2}Cu_{3}O_{7-x}$ Coated Conductor by PLD Process (PLD법을 이용한 $TmBa_{2}Cu_{3}O_{7-x}$ 초전도 선재 제작 및 전류전송특성 평가)

  • Kwon, O-Jong;Ko, Rock-Kil;Koo, Hyun;Bae, Sung-Hwan;Jung, Myung-Jin;Oh, Sang-Soo;Park, Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2209-2213
    • /
    • 2009
  • $REBa_{2}Cu_{3}O_{7-d}$(REBCO) coated conductors(REBCO CCs) have been studied for electric power applications which require high current density wires. As long as the critical transition temperature(Tc) is concerned, REBCO CCs with large $RE^{3+}$ ions have been expected to have better current transport properties than those with smaller $RE^{3+}$ ions. For this reason, REBCO's with large $RE^{3+}$ ions which include GdBCO, NdBCO and SmBCO have been mainly considered as the superconducting layer of CCs. On the other hand, REBCO's with smaller $RE^{3+}$ions are expected to have advantages in the fabrication process of CCs because of the lower melting temperature. But it has not yet been made clear which REBCO is the most suitable for the superconducting layer of CCs. In this study, we investigated the current transport properties of REBCO CCs with small $RE^{3+}$ ion and advantages of using that in the CC fabrication process. Thin films of TmBCO, which has smaller $RE^{3+}$ion than most other $RE^{3+}$ ions, were fabricated on buffered metal substrate as the superconducting layer of CC by PLD process. TmBCO CC shows critical current density (Jc (77 K, sf) = $2.3\;MA/cm^2$) high enough to be utilized for application in electric power devices. Compared with previous experiments using the same PLD system, deposition temperature was approximately $20^{\circ}C$ lower than NdBCO thin films on buffered metal substrates.

Fabrication of YBCO Superconducting Thick Film by Use of Lateral Shaky Field Assisted EPD Method (측면진동보조전계 전기영동 전착방식을 적용한 YBCO 초전도 후막의 제작)

  • 소대화;전용우
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.11
    • /
    • pp.1041-1046
    • /
    • 2003
  • In order to improve the surface uniformity and the conduction properties of the fabricated YBCO thick films, a system that applies alternating field vertically to the EPD field has been developed for the first time and applied to the electrophoretic deposition process. The applied alternating electric field, so called Shaky Alternating Assisted Field, caused a force to be exerted on each YBCO particle and resulted in a shaking of the particle in the direction of applied electric field, accomplishing a uniform particle orientation. The usual commercial electrical power was used for the vertically applied alternating voltage and the induced electric field was 25-120 V/cm at 60Hz. The thick film fabricated by the method developed in this paper showed better surface uniformity without crack and porosity and improved film characteristics such as critical temperature (Tc,zero = 90 K) and critical current density (2354 A/$\textrm{cm}^2$), Therefore, it is expected that the shaky-aligned electrophoretic deposition method can be used to fabricate superconductor films through a simpler process and at less expense.

Superconducting properties through ceramic coating condition on high-Tc superconducting tapes (고온 초전 도체의 산화물 코팅 조건 변화에 따른 초전도 특성의 변화)

  • 이남진;하동우;하홍수;장현만;오상수;손명환;권영길;김상현;류강식
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.218-221
    • /
    • 2000
  • Currently, Bi-2223 HTS tape is capable of being fabricated in longer than 100m length by industrial processes. But there are some problems in heat treatment of the degree of longer than 100m tape, which is in term of volume occupied with specimen in furnace. The effects of ceramic coating with variable slurry states were studied in Bi-2223 high-temperature superconductor. The HTS tapes coated with oxide were prepared by using dip-coating method on slurry state. Critical current(I$_{c}$) of tapes coated with ceramic materials were equal with 11.5A at 77K after first heat treatment as different slurries. For final heat treatment, Critical current of HTS tapes coated with zirconia oxide mixed in PMMA and PVA organic solute were 20.8A at 77K. The breakdown voltage of HTS tapes coated with zirconia oxide were 3kV in air and 4~7kV in L$N_2$.>.

  • PDF

Microstructure and Superconducting Properties of Ag-$Bi_{1.84}Pb_{0.34}Sr_{1.91}Ca_{2.03}Cu_{3.06}O_{10+{\delta}}$ Composites (Ag-$Bi_{1.84}Pb_{0.34}Sr_{1.91}Ca_{2.03}Cu_{3.06}O_{10+{\delta}}$ 복합체의 미세구조와 초전도특성)

  • 이민수
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.6
    • /
    • pp.249-256
    • /
    • 2003
  • Samples with the nominal composition, Ag-$Bi_{1.84}Pb_{0.34}Sr_{1.91}Ca_{2.03}Cu_{3.06}O_{10+{\delta}}$ high $T_{c}$ superconductors containing Ag as an additive were fabricated by a solid-state reaction method. Samples with Ag of 10 wt%, 30 wt%, and 50 wt% each were sintered at $860^{\circ}C$~$870^{\circ}C$ for 24 hours. The structural characteristics, the microstructures and the critical temperature with respect to the each samples were investigated by XRD, four-prove methode, SEM and EDS respectively. The $T_{c}\;^{zero}$ of the sample with the 50 wt% Ag additive at the surface showed 94 K.

SOME CHARACTERISTICS OF THE CERAMIC SUPERCONDUCTORS PHYSICS PROERTIES AND CHEMICAL ASPECTS

  • Escudero, Roberto
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1992.05a
    • /
    • pp.17-17
    • /
    • 1992
  • The ceramic high transition temperature superconducting materials present many interesting characteristics that will be analysed from two points of view: physical behavior, and chemical aspects. From the first point of view, these materials display an enormous variety of different physical properties. At low doping levels the normal state shows antiferromagnetism and insulating behavior. At intermediate doping levels, an anomalous metallic state appears and, the optimum Tc in the superconducting state is generated. With increasing doping a normal metallic state develops and superconductivity starts to disappear. Many of the physical phenomena that describe the overall behavior when doping levels are changed will be discussed. From the poing of view of the chemical aspects. we well discuss some of the problems involved in the methods of preparation with particular emphasis on defects, crystal structures, critical currrents, and applications in technology.

  • PDF

Microstructure and Properties of High Tc Superconductor fabricated by Hot Isostatic Pressing (열간정수압소결(HIP) 시킨 고온초전도체의 조직과 특성)

  • Song, Jin-Tae;Akihama, Ryozo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1988.05a
    • /
    • pp.17-19
    • /
    • 1988
  • $YBa_2Cu_3O_{7-x}$ oxide superconductors were fabricated by the hot isostatic pressing (HIP). It was shown that their structures were orthorombic and constited of a single (123) phase. While as-sintered compacts had many pores, they were remarkably reduced by Hiping. The on-set and off set temperature of (123) compound sintered at $950^{\circ}C$ in oxygen and hiping at $880^{\circ}C$ were the highest and it showed 0 resistance at $90^{\circ}K$. The critical current density ($J_c$) of the above superconductor was $27A/cm^2$ and it also showed a number of twin structures, which are typical of high $T_c$ superconductor. It seemed that the low current density may be due to the many pores of starting-sintered compacts.

  • PDF

Josephson Tunneling and Pairing Symmetry of High Tc Superconductor

  • Shin, E.J.;Nahm, Kyun;Chung, M.H;Kim, M.D.;Kim, C.K.;Noh, H.S.
    • Progress in Superconductivity
    • /
    • v.1 no.2
    • /
    • pp.85-88
    • /
    • 2000
  • The temperature dependent Josephson critical current $J_c(T)/J_c(0)$ between high $T_c$ superconductors along the a-axis is theoretically studied. The interface influence on the wave functions of quasi-particles is included in the theory within the framework of the two-dimensional t-J model. It is found that the experimental results can be satisfactorily explained by the present model with d wave pairing symmetry.

  • PDF