• Title/Summary/Keyword: critical plane approach

Search Result 60, Processing Time 0.026 seconds

An Investigation of Anisotropic Tensile Strength of Transversely Isotropic Rock by Critical Plane Approach (임계면법을 이용한 횡등방성 암석의 이방성 인장강도 해석)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.18 no.3
    • /
    • pp.194-201
    • /
    • 2008
  • In order to investigate the characteristics in tensile strength of transversely isotropic rock, a new anisotropic tensile failure function was suggested. According to the function, the tensile strength is minimum in the normal direction to a weakness plane and rises exponentially to its maximum on a plane perpendicular to the weakness plane. The anisotropic function is defined in terms of three strength parameters which can be identified trom direct tensile tests of transversely isotropic rocks. By incorporating the suggested function into the critical plane approach, a numerical procedure which enables to search the tensile strength and the direction of critical plane at failure was presented. The validity of the suggested numerical procedure was checked through the simulation of direct tensile tests reported in a literature. The numerical results from the simulation were in good agreements with those from the laboratory tests.

Study of Axial and Torsional Fatigue Life Prediction Method for Low Pressure Turbine Rotor Steels (저압터빈용 로터강의 이축 피로수명예측법에 관한 연구)

  • Hyun, Jung-Seob;Song, Gee-Wook;Lee, Young-Shin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.149-155
    • /
    • 2005
  • The rotating components such as turbine rotors in service are generally subjected to multiaxial cyclic loading conditions. The prediction of fatigue lift for turbine rotor components under complex multiaxial loading conditions is very important to prevent the fatigue failures in service. In this paper, axial and torsional low cycle fatigue tests were preformed for 3.5NiCrMo steels serviced low pressure turbine rotor of nuclear power plant. Several methods to predict biaxial fatigue life such as Tresca, von Mises and Brown & Miller's critical plane approach were evaluated to correlate the experimental results for serviced NiCrMoV steel. The fracture mode and fatigue characteristics of NiCrMoV steel were discussed based on the results of fatigue tests performed under the axial and torsional test conditions. In particular, the Brown and Miller's critical plane approach was found to best correlate the experimental data with predictions being within a factor of 2.

Prediction of Strength for Transversely Isotopic Rock Based on Critical Plane Approach (임계면법을 이용한 횡등방성 암석의 강도 예측)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.17 no.2 s.67
    • /
    • pp.119-127
    • /
    • 2007
  • Based on the critical plane approach, a methodology far predicting the anisotropic strength ot transversely isotropic rock is Proposed. It is assumed that the rock failure is governed by Hoek-Brown failure criterion. In order to establish an anisotropic failure function, Mohr envelope equivalent to the original Hoek-Brown criterion is used and the strength parameters m, s are expressed as scalar functions of orientation. The conjugate gradient method, which is one of the robust optimization techniques, is applied to the failure function for searching the orientation giving the maximum value of the anisotropic function. While most of the existing anisotropic strength models can be applied only when the stress condition is the same as that of conventional triaxial compression test, the proposed model can be applied to the general 3-dimensional stress conditions. Through the simulation of triaxial compression tests for transversely isotropic rock sample, the validity of the proposed method is investigated by comparing the predicted triaxial strengths and inclinations of failure plane.

Mission based gas turbine engine rotating parts life evaluation (임무를 가지는 가스터빈 엔진 회전부품 피로수명 평가)

  • Kim, Kyung-Heui;Kim, Hyun-Jae;Chen, Seung-Bae;Kim, Dong-Hyun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.05a
    • /
    • pp.385-390
    • /
    • 2009
  • The gas turbine engine structures usually are placed on high thermal mechanical stress condition. For general low cycle fatigue evaluation, simple fatigue criterion based on critical plane approach is developed. LCF life of turbine wheel is evaluated with this criterion and process contrived together.

  • PDF

A study on fretting fatigue life prediction using multiaxial fatigue parameters (다축 피로 파라미터를 이용한 프레팅 피로 수명 예측에 관한 연구)

  • Kwak D.H.;Roh H.R.;Kim J.K.;Cho S.B.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.359-360
    • /
    • 2006
  • Recently, a lot of work and interest has been devoted to the development of multiaxial fatigue parameters for fretting fatigue life prediction. Many of these parameters have been reviewed in the literature for simple geometries like a cylinder-on-flat contact configuration. The purpose of this study was to estimate fretting fatigue life using critical plane approach which is one of the multiaxial fatigue theories.

  • PDF

A Numerical Approach for Lightning Impulse Flashover Voltage Prediction of Typical Air Gaps

  • Qiu, Zhibin;Ruan, Jiangjun;Huang, Congpeng;Xu, Wenjie;Huang, Daochun
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.3
    • /
    • pp.1326-1336
    • /
    • 2018
  • This paper proposes a numerical approach to predict the critical flashover voltages of air gaps under lightning impulses. For an air gap, the impulse voltage waveform features and electric field features are defined to characterize its energy storage status before the initiation of breakdown. These features are taken as the input parameters of the predictive model established by support vector machine (SVM). Given an applied voltage range, the golden section search method is used to compute the prediction results efficiently. This method was applied to predict the critical flashover voltages of rod-rod, rod-plane and sphere-plane gaps over a wide range of gap lengths and impulse voltage waveshapes. The predicted results coincide well with the experimental data, with the same trends and acceptable errors. The mean absolute percentage errors of 6 groups of test samples are within 4.6%, which demonstrates the validity and accuracy of the predictive model. This method provides an effectual way to obtain the critical flashover voltage and might be helpful to estimate the safe clearances of air gaps for insulation design.

On the fatigue performance of Aluminum alloy 2024 scarfed lap joints

  • Yan, W.Z.;Gao, H.S.;Yuan, X.;Wang, F.S.;Yue, Z.F.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.35-49
    • /
    • 2012
  • A series of fatigue test were carried out on scarfed lap joints (SLJ) using in airfoil siding to explore the effect of structural details, such as rows of rivets, lap angles, on its fatigue performance. Finite element (FE) analysis was employed to explore the effect of lap angle on load transfer and the stress evolution around the rivet hole. At last, the fatigue lives were predicted by nominal stress approach and critical plane approach. Both of the test results and predicted results showed that fatigue life of SLJ was remarkably increased after introducing lap angle into the faying surface. Specimen with the lap angle of $1.68^{\circ}$ exhibits the best fatigue performance in the present study.

Anisotropic Version of Mohr-Coulomb Failure Criterion for Transversely Isotropic Rock (횡등방성 암석의 강도해석을 위한 이방성 Mohr-Coulomb 파괴조건식)

  • Lee, Youn-Kyou;Choi, Byung-Hee
    • Tunnel and Underground Space
    • /
    • v.21 no.3
    • /
    • pp.174-180
    • /
    • 2011
  • An anisotropic version of Mohr-Coulomb failure criterion is proposed in order to provide a strength criterion for transversely isotropic rock. The concept of fabric tensor introduced by Pietruszczak & Mroz (2001) is employed to define the friction angle and cohesion as scalar functions of the fabric tensors. The anisotroy in these two strength parameters are calculated in association with the consideration of the relative rotation between the principal stress coordinate and the principal material triad. The critical plane on which the anisotropic function maximized is found by an optimization technique based on the Lagrange multiplier method. To demonstrate the performance of the anisotropic failure criterion, conventional triaxial tests on the samples having various inclinations of weakness plane are simulated and the resulting triaxial strength and dip angle of failure plane are discussed.

A Study on Fatigue Life under Elliptical Contact using High Cycle Fatigue Models (고주기 피로 모델을 이용한 타원 접촉시 피로 수명에 관한 연구)

  • 조용주;김태완;구영필
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.252-258
    • /
    • 2004
  • In this study, using high cycle fatigue (HCF) criteria, the simulation of rolling contact fatigue is conducted under elliptical contact. The HCF criteria fall into three categories: the critical plane approach, the stress invariant approach and the approach based on the mesoscopic scale. The accurate calculation of contact stresses and subsurface stresses is essential to the prediction of crack initiation life. Contact stresses are obtained by contact analysis of a semi-infinite solid based on the use of influence functions and the subsurface stress field is obtained using rectangular patch solutions. The simulation results show that the critical load is decreasing rapidly and the site of crack initiation also moves rapidly to the surface from the subsurface when the friction coefficient exceeds a specific value for all of three fatigue criteria.

A Change and Prediction of Biaxial Fatigue Life of Cast Duplex Stainless Steels by Degradation (2상 주조 스테인리스강의 열화로 인한 2축 피로수명의 변화와 예측)

  • Kwon, Jae-Do;Park, Joong-Cheul
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.4
    • /
    • pp.410-418
    • /
    • 2004
  • The multiaxial fatigue test under in-phase and out-of$.$phase load were performed to study what degradation phenomenon affects fatigue life with virgin and 3600 hrs degraded materials. The various kind of fatigue data fur fatigue life prediction were acquired under pure axial and pure torsional load of fully reversal condition. The models which was investigated are: 1) the von Mises equivalent strain range, 2) the critical shear plane approach method of Fatemi-Socie(FS) parameter, 3) the modified Smith-Watson-Topper(SWT) parameter. The result showed that, fatigue life by material degradation are decreased and life prediction which was used the FS parameter is not conservative but the best result.