• Title/Summary/Keyword: critical parameters

Search Result 1,941, Processing Time 0.035 seconds

The study of bending and buckling behavior of sandwich structure according to design parameter variation (설계변수 변화에 따른 샌드위치 구조물의 굽힘 및 좌굴 거동에 관한 연구)

  • 한근조;안성찬;안성찬;김진영
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.841-844
    • /
    • 1997
  • Sandwich structure is widely used in various fields of industry due to its excellent strength and stiffness compared with weight. We studied the buckling and bending behavior with respect to the variation of design parameters such as length, height, and thickness of honeycomb sandwich core. We found that as the density and the thickness of core become higher, the value of critical bucking load increased significantly. We found that the effect of bending stress due to critical buckling load resulted in high bending stress and the value of bending stress decreased in half according to the increase of length of core. The effect by bending stress is dominant above the portion of the intersection line between bending stress and the effect of buckling is dominant below the potion of it. We could get proper thickness ratio and density of core according to applied load conditions.

  • PDF

Critical Heat Flux of an Impinging Water Jet on a Heated Surface with Boiling (비등을 수반하는 발열면에 충돌하는 수분류의 임계열유속에 관한 연구)

  • Lee, Jong-Su;Kim, Heuy-Dong;Choi, Kuk-Kwang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.4
    • /
    • pp.485-494
    • /
    • 2000
  • The purpose of this paper is to investigate a critical heat flux(CHF) during forced convective subcooled and saturated boiling in free water jet system impinged on a rectangular heated surface. The surface is supplied with subcooled or saturated water through a rectangular jet. Experimental parameters studied are a width of heated surface, a height of supplementary water and a degree of subcooling. Incipient boiling point is observed in the temperature of 6${\~}8^{\circ}C$ of superheat of test specimen. CHF depends on jet velocity for various boiling-involved coolant system. CHF also is proportional to the nozzle exit velocity to the power of n, where n is 0.55 and 0.8 for subcooled and saturated boiling, respectively. CHF is enhanced with a higher jet velocity, higher degree of subcooling and smaller width of a heated surface.

An investigation of non-linear optimization methods on composite structures under vibration and buckling loads

  • Akbulut, Mustafa;Sarac, Abdulhamit;Ertas, Ahmet H.
    • Advances in Computational Design
    • /
    • v.5 no.3
    • /
    • pp.209-231
    • /
    • 2020
  • In order to evaluate the performance of three heuristic optimization algorithms, namely, simulated annealing (SA), genetic algorithm (GA) and particle swarm optimization (PSO) for optimal stacking sequence of laminated composite plates with respect to critical buckling load and non-dimensional natural frequencies, a multi-objective optimization procedure is developed using the weighted summation method. Classical lamination theory and first order shear deformation theory are employed for critical buckling load and natural frequency computations respectively. The analytical critical buckling load and finite element calculation schemes for natural frequencies are validated through the results obtained from literature. The comparative study takes into consideration solution and computational time parameters of the three algorithms in the statistical evaluation scheme. The results indicate that particle swarm optimization (PSO) considerably outperforms the remaining two methods for the special problem considered in the study.

The improvement of genetic algorithm using Boltzmann selection (유전자 알고리즘에서 볼쯔만 선택방법의 개선)

  • 윤기석;김태형;김유신
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.429-432
    • /
    • 1999
  • In this paper, we propose a method to improve Genetic Algorithm using Boltzmann selection which Michael has suggested. But Michael uses temperature schedule(the initial temperature, the cooling rate), which can be applicable only to the limited range of problems. We propose a new method to find the critical temperature and the cooling rate as parameters of the temperature schedule. The critical temperature can be derived from the distribution of each individual's fitness. Through the application of the island model where each island has differing cooling rate, it is proved that it is unnecessary to find the optimal cooling rate. The simulation on the TSP's with various city sizes proves the proposed critical temperature correct.

  • PDF

Influence of Redox Potential Current Density on Polarization Curves with Polypropylene Polymer

  • Park, Chil-Nam;Kim, Myung-Sun
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.255-261
    • /
    • 2000
  • Experiments were carried out to measure the corrosion potential and current density variations in the polarization curves of polypropylene. In particular, the results were examined to identify those influences affecting the corrosion potential, such as temperature, pH, salt, and oxygen. The Tafel slope for the anodic dissolution was determined based on the polarization effect under various conditions. Furthermore, the optimum conditions for the most rapid transformation were establish based on a variety of conditions, including temperature, pH, corrosion rate, and resistance of corrosion potential. The second anodic current density peak and maximum passive current density were designated as the critical corrosion sensitivity(I(sub)r/I(sub)f). This I(sub)r/I(sub)f value was then used to measure the critical corrosion sensitivity of polypropylene. The potentiodynamic parameters of corrosion were obtained using a Tafel plot.

  • PDF

A Study on the operational characteristics of Thermal.Current Resistance of 3 phase HTS Cable under Unbalanced load operation (3상 초전도케이블의 불평형 부하운전시 열.전류 저항에 의한 운전특성연구)

  • Lee, Geun-Joon;Hwang, Si-Dole;Lee, Hyun-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.189-1-190-1
    • /
    • 2008
  • A high temperature superconducting(HTS) power cable is available for high capacity current in normal condition. But resistance was appeared to operate unbalance load by thermal current characteristic. This characteristic of HTS power cable used to design for unstated condition. And than, It used to understand and analyze characteristic of power cable thermal and critical current. This study appeared that quench resistance reason from shield and former current rise to superconductor(SC) current. The resistance of SC occurred that the cable temperature rise to fault current after decreased critical current. The quench resistance of SC increased in temperature or decreased in critical current. So the quench resistance of SC correlated with resistance of both shield and former current. It need to sufficiently influenced the parameters of HTS cable design.

  • PDF

Size dependent effect on deflection and buckling analyses of porous nanocomposite plate based on nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Structural Engineering and Mechanics
    • /
    • v.76 no.1
    • /
    • pp.27-56
    • /
    • 2020
  • In this paper, the deflection and buckling analyses of porous nano-composite piezoelectric plate reinforced by carbon nanotube (CNT) are studied. The equations of equilibrium using energy method are derived from principle of minimum total potential energy. In the research, the non-local strain gradient theory is employed to consider size dependent effect for porous nanocomposite piezoelectric plate. The effects of material length scale parameter, Eringen's nonlocal parameter, porosity coefficient and aspect ratio on the deflection and critical buckling load are investigated. The results indicate that the effect of porosity coefficient on the increase of the deflection and critical buckling load is greatly higher than the other parameters effect, and size effect including nonlocal parameter and the material length scale parameter have a lower effect on the deflection increase with respect to the porosity coefficient, respectively and vice versa for critical buckling load. Porous nanocomposites are used in various engineering fields such as aerospace, medical industries and water refinery.

Vibration and Dynamic Stability of Pipes Conveying Fluid on Elastic Foundations

  • Ryu, Bong-Jo;Ryu, Si-Ung;Kim, Geon-Hee;Yim, Kyung-Bin
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.12
    • /
    • pp.2148-2157
    • /
    • 2004
  • The paper deals with the vibration and dynamic stability of cantilevered pipes conveying fluid on elastic foundations. The relationship between the eigenvalue branches and corresponding unstable modes associated with the flutter of the pipe is thoroughly investigated. Governing equations of motion are derived from the extended Hamilton's principle, and a numerical scheme using finite element methods is applied to obtain the discretized equations. The critical flow velocity and stability maps of the pipe are obtained for various elastic foundation parameters, mass ratios of the pipe, and structural damping coefficients. Especially critical mass ratios, at which the transference of the eigenvalue branches related to flutter takes place, are precisely determined. Finally, the flutter configuration of the pipe at the critical flow velocities is drawn graphically at every twelfth period to define the order of the quasi-mode of flutter configuration.

Vibration and instability of nanocomposite pipes conveying fluid mixed by nanoparticles resting on viscoelastic foundation

  • Natanzi, Abolfazl Jafari;Jafari, Gholamreza Soleimani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.21 no.5
    • /
    • pp.569-582
    • /
    • 2018
  • In this study, nonlinear vibration and stability of a polymeric pipe reinforced by single-walled carbon naotubes (SWCNTs) conveying fluid-nanoparticles mixture flow is investigated. The Characteristics of the equivalent composite are determined using Mori-Tanaka model considering agglomeration effects. The surrounding elastic medium is simulated by orthotropic visco-Pasternak medium. Employing nonlinear strains-displacements, stress-strain energy method the governing equations were derived using Hamilton's principal. Differential quadrature method (DQM) is used for obtaining the frequency and critical fluid velocity. The influence of volume percent of SWCNTs, agglomeration, geometrical parameters of pipe, viscoelastic foundation and fluid velocity are shown on the frequency and critical fluid velocity of pipe. Results showed the increasing volume percent of SWCNTs leads to higher frequency and critical fluid velocity.

A study on the Determination of Fractuye Parameters for Rubber Toughened Polymeric Materials Using Instrumented Charpy Impact Test (샤피충격시험기를 이용한 고무보강 폴리머재료의 파괴인자 결정에 관한연구)

  • Choi, Young-Sic;Park, Myung-Kyun;Bahk, S.M.
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.389-394
    • /
    • 2001
  • The notched Charpy and Izod impact tests arc the most prevalent techniques used to characterize the effects of high impulse loads on ploymeric materials. An analysis method for rubber toughened PVC is suggested to evaluate critical strain energy release rates(Gc) from the Charpy impact energy measurements. An Instrumented Charpy impact tester was used to extract ancillary information concerning fracture properties in addition to total fracture properties and maximum critical loads. The stress intensity factor Kd was computed for varying amounts of rubber contents from the obtained maximum critical loads and also toughening effects were investigated as well.

  • PDF